Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3157

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3157

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3157 (TID: 10034), and it has 574 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric354 unique values
0 missing
molecule_id (row identifier)nominal574 unique values
0 missing
IDEnumeric332 unique values
0 missing
AECCnumeric368 unique values
0 missing
HVcpxnumeric322 unique values
0 missing
MSDnumeric383 unique values
0 missing
SPInumeric392 unique values
0 missing
CATS2D_08_AAnumeric15 unique values
0 missing
IC3numeric400 unique values
0 missing
MWnumeric460 unique values
0 missing
MATS8mnumeric247 unique values
0 missing
Eig13_AEA.ed.numeric267 unique values
0 missing
Eig07_AEA.ri.numeric287 unique values
0 missing
CATS2D_03_DAnumeric14 unique values
0 missing
Eig06_AEA.ri.numeric274 unique values
0 missing
SpMaxA_AEA.ed.numeric135 unique values
0 missing
GATS8vnumeric272 unique values
0 missing
Eig06_EA.dm.numeric71 unique values
0 missing
H.051numeric11 unique values
0 missing
nRCONR2numeric5 unique values
0 missing
Eig15_AEA.ed.numeric257 unique values
0 missing
Eig07_EA.dm.numeric48 unique values
0 missing
Eig11_AEA.dm.numeric261 unique values
0 missing
nDBnumeric16 unique values
0 missing
Eig08_AEA.ri.numeric318 unique values
0 missing
Eta_betaSnumeric122 unique values
0 missing
Eig08_EA.ri.numeric317 unique values
0 missing
Eig04_EA.dm.numeric85 unique values
0 missing
VvdwZAZnumeric463 unique values
0 missing
Eig13_AEA.dm.numeric256 unique values
0 missing
Eig08_EAnumeric253 unique values
0 missing
SM02_AEA.dm.numeric253 unique values
0 missing
Eig14_EA.ed.numeric306 unique values
0 missing
SM09_AEA.ri.numeric306 unique values
0 missing
VARnumeric227 unique values
0 missing
CATS2D_05_AAnumeric16 unique values
0 missing
SMTIVnumeric531 unique values
0 missing
X1Madnumeric511 unique values
0 missing
ECCnumeric317 unique values
0 missing
SpMaxA_EAnumeric87 unique values
0 missing
CSInumeric359 unique values
0 missing
SpMaxA_AEA.bo.numeric103 unique values
0 missing
Eig11_EAnumeric245 unique values
0 missing
SM05_AEA.dm.numeric245 unique values
0 missing
Uindexnumeric393 unique values
0 missing
SpAD_EA.dm.numeric246 unique values
0 missing
ATS3snumeric404 unique values
0 missing
Eig14_EA.bo.numeric244 unique values
0 missing
MPC03numeric103 unique values
0 missing
TPSA.Tot.numeric249 unique values
0 missing
S0Knumeric268 unique values
0 missing
CATS2D_03_AAnumeric8 unique values
0 missing
SM04_EA.ri.numeric397 unique values
0 missing
ZM1Vnumeric232 unique values
0 missing
MATS1inumeric263 unique values
0 missing
S2Knumeric430 unique values
0 missing
Eig09_EA.ri.numeric300 unique values
0 missing
nArORnumeric4 unique values
0 missing
Eig13_EA.ed.numeric277 unique values
0 missing
SM08_AEA.ri.numeric277 unique values
0 missing
ATS1snumeric376 unique values
0 missing
TPSA.NO.numeric232 unique values
0 missing
Eig10_EAnumeric240 unique values
0 missing
SM04_AEA.dm.numeric240 unique values
0 missing
Polnumeric89 unique values
0 missing
TIC3numeric477 unique values
0 missing
Eig11_AEA.ed.numeric231 unique values
0 missing
Ramnumeric31 unique values
0 missing
Eig06_AEA.bo.numeric222 unique values
0 missing
DECCnumeric346 unique values
0 missing

62 properties

574
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
182.82
Maximum kurtosis among attributes of the numeric type.
-0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
5.97
Third quartile of kurtosis among attributes of the numeric type.
82224.01
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
16.56
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.36
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
2.12
Third quartile of skewness among attributes of the numeric type.
10.76
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
6.97
Third quartile of standard deviation of attributes of the numeric type.
120419.28
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.4
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.74
First quartile of means among attributes of the numeric type.
8.56
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
1284.38
Mean of means among attributes of the numeric type.
-0.39
First quartile of skewness among attributes of the numeric type.
-0.34
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.36
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.12
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.87
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1
Mean skewness among attributes of the numeric type.
3.54
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1795.81
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.45
Second quartile (Median) of skewness among attributes of the numeric type.
0.75
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.1
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task