Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5518

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5518

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5518 (TID: 101220), and it has 709 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric70 unique values
0 missing
molecule_id (row identifier)nominal709 unique values
0 missing
SaaNHnumeric195 unique values
0 missing
nPyrrolesnumeric3 unique values
0 missing
Cl.090numeric2 unique values
0 missing
H.048numeric4 unique values
0 missing
C.033numeric4 unique values
0 missing
PCDnumeric570 unique values
0 missing
IC2numeric504 unique values
0 missing
SaaaCnumeric407 unique values
0 missing
SpMax1_Bh.e.numeric222 unique values
0 missing
piPC10numeric554 unique values
0 missing
P_VSA_LogP_6numeric188 unique values
0 missing
Eig01_EA.bo.numeric335 unique values
0 missing
SM11_AEA.ri.numeric335 unique values
0 missing
SpDiam_EA.bo.numeric337 unique values
0 missing
SpMax_EA.bo.numeric335 unique values
0 missing
SpMax2_Bh.i.numeric253 unique values
0 missing
Eig09_AEA.ed.numeric476 unique values
0 missing
piPC05numeric476 unique values
0 missing
piPC08numeric540 unique values
0 missing
NaaNHnumeric3 unique values
0 missing
Eig07_EA.bo.numeric468 unique values
0 missing
piPC07numeric534 unique values
0 missing
SRW09numeric94 unique values
0 missing
nCrsnumeric10 unique values
0 missing
ATS7mnumeric574 unique values
0 missing
piPC04numeric479 unique values
0 missing
SpMin4_Bh.i.numeric414 unique values
0 missing
SpMin4_Bh.p.numeric401 unique values
0 missing
SpMax6_Bh.i.numeric399 unique values
0 missing
Eig08_EA.ri.numeric477 unique values
0 missing
D.Dtr09numeric397 unique values
0 missing
SpMin4_Bh.e.numeric419 unique values
0 missing
SpMin7_Bh.p.numeric402 unique values
0 missing
Eig09_EA.ed.numeric534 unique values
0 missing
SM04_AEA.ri.numeric534 unique values
0 missing
Eig06_AEA.bo.numeric463 unique values
0 missing
nABnumeric20 unique values
0 missing
piPC06numeric514 unique values
0 missing
Eig08_AEA.ri.numeric481 unique values
0 missing
piIDnumeric597 unique values
0 missing
Eig08_AEA.bo.numeric451 unique values
0 missing
IC4numeric439 unique values
0 missing
SpMax1_Bh.i.numeric218 unique values
0 missing
SpMin3_Bh.p.numeric321 unique values
0 missing
NaasCnumeric12 unique values
0 missing
Eig08_EAnumeric453 unique values
0 missing
SM02_AEA.dm.numeric453 unique values
0 missing
SpMin5_Bh.e.numeric401 unique values
0 missing
Eig02_EA.bo.numeric395 unique values
0 missing
SM12_AEA.ri.numeric395 unique values
0 missing
SpMin7_Bh.v.numeric394 unique values
0 missing
Eig08_EA.bo.numeric476 unique values
0 missing
IC3numeric459 unique values
0 missing
Eig07_AEA.ri.numeric508 unique values
0 missing
Eig06_EA.bo.numeric496 unique values
0 missing
Eig08_EA.ed.numeric550 unique values
0 missing
SM03_AEA.ri.numeric550 unique values
0 missing
piPC09numeric552 unique values
0 missing
SpMin6_Bh.s.numeric387 unique values
0 missing
SpMin4_Bh.v.numeric388 unique values
0 missing
ATS8mnumeric563 unique values
0 missing
SpMin5_Bh.s.numeric400 unique values
0 missing
SpMaxA_AEA.dm.numeric138 unique values
0 missing
Eig05_EAnumeric471 unique values
0 missing
SM13_AEA.bo.numeric471 unique values
0 missing
Eig10_AEA.ed.numeric461 unique values
0 missing
TIC1numeric641 unique values
0 missing
IDDEnumeric303 unique values
0 missing
nCsnumeric11 unique values
0 missing

62 properties

709
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
14.86
Maximum kurtosis among attributes of the numeric type.
0.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
3.13
Third quartile of kurtosis among attributes of the numeric type.
172
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.98
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.16
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
0.41
Third quartile of skewness among attributes of the numeric type.
4.1
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.81
Third quartile of standard deviation of attributes of the numeric type.
74.39
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.39
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.4
First quartile of means among attributes of the numeric type.
2.15
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.14
Mean of means among attributes of the numeric type.
-0.86
First quartile of skewness among attributes of the numeric type.
0.15
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.26
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.1
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.39
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.22
Mean skewness among attributes of the numeric type.
3.36
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.65
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.5
Second quartile (Median) of skewness among attributes of the numeric type.
0.42
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.09
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task