Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4780

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4780

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4780 (TID: 10437), and it has 168 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric152 unique values
0 missing
molecule_id (row identifier)nominal168 unique values
0 missing
MATS3vnumeric136 unique values
0 missing
GATS8enumeric136 unique values
0 missing
JGI1numeric94 unique values
0 missing
GATS4mnumeric136 unique values
0 missing
Eig08_AEA.bo.numeric116 unique values
0 missing
Eig08_AEA.ri.numeric131 unique values
0 missing
CATS2D_02_ALnumeric13 unique values
0 missing
MATS4mnumeric132 unique values
0 missing
CATS2D_05_ALnumeric16 unique values
0 missing
NsssNnumeric4 unique values
0 missing
MATS3pnumeric128 unique values
0 missing
P_VSA_e_5numeric28 unique values
0 missing
nOnumeric7 unique values
0 missing
SpMax5_Bh.m.numeric126 unique values
0 missing
GATS4inumeric139 unique values
0 missing
Chi0_EA.ed.numeric137 unique values
0 missing
Eig04_EA.bo.numeric111 unique values
0 missing
Eig07_AEA.ri.numeric119 unique values
0 missing
Eig09_AEA.bo.numeric113 unique values
0 missing
Eig10_AEA.ri.numeric97 unique values
0 missing
piPC01numeric65 unique values
0 missing
SCBOnumeric65 unique values
0 missing
SM14_AEA.ri.numeric111 unique values
0 missing
SpAD_EA.bo.numeric145 unique values
0 missing
SpMaxA_AEA.dm.numeric100 unique values
0 missing
SpMaxA_AEA.ri.numeric90 unique values
0 missing
Eig05_AEA.ri.numeric126 unique values
0 missing
Eig05_EAnumeric115 unique values
0 missing
Eig05_EA.ed.numeric111 unique values
0 missing
Eig05_EA.ri.numeric124 unique values
0 missing
SM13_AEA.bo.numeric115 unique values
0 missing
SM14_AEA.dm.numeric111 unique values
0 missing
X3solnumeric147 unique values
0 missing
Eig04_AEA.ri.numeric125 unique values
0 missing
Eig04_EAnumeric111 unique values
0 missing
SM12_AEA.bo.numeric111 unique values
0 missing
SpMaxA_EA.ed.numeric107 unique values
0 missing
Eig06_AEA.dm.numeric121 unique values
0 missing
Eig11_AEA.ri.numeric101 unique values
0 missing
X1Madnumeric154 unique values
0 missing
piPC10numeric124 unique values
0 missing
SpMin3_Bh.m.numeric96 unique values
0 missing
SpMin3_Bh.s.numeric109 unique values
0 missing
Eig07_AEA.dm.numeric119 unique values
0 missing
Eig09_AEA.dm.numeric129 unique values
0 missing
CATS2D_03_AAnumeric3 unique values
0 missing
SpMAD_EA.dm.numeric121 unique values
0 missing
Eta_alphanumeric122 unique values
0 missing
SpMax4_Bh.m.numeric128 unique values
0 missing
X1solnumeric144 unique values
0 missing
X5solnumeric146 unique values
0 missing
piIDnumeric137 unique values
0 missing
P_VSA_LogP_4numeric42 unique values
0 missing
piPC09numeric127 unique values
0 missing
ATS1mnumeric140 unique values
0 missing
ZM2Madnumeric155 unique values
0 missing
MATS4snumeric121 unique values
0 missing
SpMax3_Bh.i.numeric117 unique values
0 missing
Chi1_EA.ed.numeric136 unique values
0 missing
Eig07_EAnumeric108 unique values
0 missing
Eig07_EA.ed.numeric111 unique values
0 missing
Eig07_EA.ri.numeric119 unique values
0 missing
Eig12_AEA.bo.numeric109 unique values
0 missing
SM02_AEA.ri.numeric111 unique values
0 missing
SM15_AEA.bo.numeric108 unique values
0 missing
SpMaxA_EA.ri.numeric87 unique values
0 missing

62 properties

168
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
6.89
Maximum kurtosis among attributes of the numeric type.
-0.12
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
1.68
Third quartile of kurtosis among attributes of the numeric type.
182.66
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.12
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.07
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
0.35
Third quartile of skewness among attributes of the numeric type.
2.02
Maximum skewness among attributes of the numeric type.
0.09
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.92
Third quartile of standard deviation of attributes of the numeric type.
76.58
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.14
First quartile of means among attributes of the numeric type.
1.05
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
8.26
Mean of means among attributes of the numeric type.
-1.28
First quartile of skewness among attributes of the numeric type.
-0.39
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.36
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.4
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.6
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.44
Mean skewness among attributes of the numeric type.
2.14
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.05
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.8
Second quartile (Median) of skewness among attributes of the numeric type.
1.07
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.99
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task