Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4617

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4617

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4617 (TID: 10911), and it has 192 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric130 unique values
0 missing
molecule_id (row identifier)nominal192 unique values
0 missing
CIC2numeric107 unique values
0 missing
SIC2numeric82 unique values
0 missing
CIC3numeric89 unique values
0 missing
BIC2numeric84 unique values
0 missing
SIC3numeric68 unique values
0 missing
JGI4numeric39 unique values
0 missing
GATS1snumeric134 unique values
0 missing
PCDnumeric105 unique values
0 missing
MATS8vnumeric127 unique values
0 missing
H.052numeric8 unique values
0 missing
BIC1numeric102 unique values
0 missing
GATS1enumeric124 unique values
0 missing
H.numeric77 unique values
0 missing
BIC3numeric71 unique values
0 missing
P_VSA_MR_2numeric33 unique values
0 missing
ZM1MulPernumeric154 unique values
0 missing
ZM1Pernumeric154 unique values
0 missing
ZM1Vnumeric108 unique values
0 missing
SpDiam_EA.bo.numeric74 unique values
0 missing
ZM2MulPernumeric154 unique values
0 missing
ZM2Pernumeric154 unique values
0 missing
ZM2Vnumeric121 unique values
0 missing
MATS1pnumeric114 unique values
0 missing
MATS7mnumeric152 unique values
0 missing
CATS2D_02_LLnumeric17 unique values
0 missing
Mvnumeric85 unique values
0 missing
P_VSA_MR_6numeric51 unique values
0 missing
GATS1mnumeric129 unique values
0 missing
MATS8pnumeric135 unique values
0 missing
ZM2Kupnumeric162 unique values
0 missing
Eig02_AEA.dm.numeric114 unique values
0 missing
SaaCHnumeric157 unique values
0 missing
SpMAD_EA.dm.numeric100 unique values
0 missing
SpMaxA_EA.dm.numeric76 unique values
0 missing
AACnumeric128 unique values
0 missing
AECCnumeric92 unique values
0 missing
ALOGPnumeric155 unique values
0 missing
ALOGP2numeric158 unique values
0 missing
AMRnumeric158 unique values
0 missing
AMWnumeric153 unique values
0 missing
ARRnumeric39 unique values
0 missing
ATS1enumeric146 unique values
0 missing
ATS1inumeric146 unique values
0 missing
ATS1mnumeric146 unique values
0 missing
ATS1pnumeric144 unique values
0 missing
ATS1snumeric154 unique values
0 missing
ATS1vnumeric151 unique values
0 missing
ATS2enumeric148 unique values
0 missing
ATS2inumeric140 unique values
0 missing
ATS2mnumeric151 unique values
0 missing
ATS2pnumeric148 unique values
0 missing
ATS2snumeric155 unique values
0 missing
ATS2vnumeric150 unique values
0 missing
ATS3enumeric146 unique values
0 missing
ATS3inumeric152 unique values
0 missing
ATS3mnumeric146 unique values
0 missing
ATS3pnumeric156 unique values
0 missing
ATS3snumeric154 unique values
0 missing
ATS3vnumeric152 unique values
0 missing
ATS4enumeric154 unique values
0 missing
ATS4inumeric155 unique values
0 missing
ATS4mnumeric159 unique values
0 missing
ATS4pnumeric154 unique values
0 missing
ATS4snumeric159 unique values
0 missing

62 properties

192
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
17.41
Maximum kurtosis among attributes of the numeric type.
-0.25
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
1.97
Third quartile of kurtosis among attributes of the numeric type.
395.09
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.67
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.71
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
0.57
Third quartile of skewness among attributes of the numeric type.
3.94
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.65
Third quartile of standard deviation of attributes of the numeric type.
143.73
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.54
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.83
First quartile of means among attributes of the numeric type.
1.33
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
38.67
Mean of means among attributes of the numeric type.
-0.19
First quartile of skewness among attributes of the numeric type.
-0.13
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.26
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.34
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.03
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.15
Mean skewness among attributes of the numeric type.
3.53
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
13.68
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.21
Second quartile (Median) of skewness among attributes of the numeric type.
0.36
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.06
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task