Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4641

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4641

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4641 (TID: 100100), and it has 259 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric213 unique values
0 missing
molecule_id (row identifier)nominal259 unique values
0 missing
ATSC5pnumeric251 unique values
0 missing
ATSC5vnumeric251 unique values
0 missing
ATS5inumeric213 unique values
0 missing
ATS5enumeric224 unique values
0 missing
ATSC2pnumeric186 unique values
0 missing
ATSC6pnumeric252 unique values
0 missing
ATSC3pnumeric229 unique values
0 missing
ATSC5mnumeric253 unique values
0 missing
CATS2D_05_LLnumeric22 unique values
0 missing
CATS2D_03_LLnumeric20 unique values
0 missing
ATSC4pnumeric251 unique values
0 missing
CATS2D_04_LLnumeric21 unique values
0 missing
ATS5pnumeric217 unique values
0 missing
ATSC6vnumeric253 unique values
0 missing
ATSC4vnumeric251 unique values
0 missing
ATS6inumeric215 unique values
0 missing
BLTA96numeric136 unique values
0 missing
MLOGPnumeric173 unique values
0 missing
MLOGP2numeric173 unique values
0 missing
ATSC3vnumeric227 unique values
0 missing
BLTD48numeric133 unique values
0 missing
BLTF96numeric133 unique values
0 missing
ATS4enumeric200 unique values
0 missing
ATS4inumeric193 unique values
0 missing
Eta_C_Anumeric185 unique values
0 missing
Eta_betaS_Anumeric61 unique values
0 missing
SM08_EA.ed.numeric183 unique values
0 missing
SM06_EA.ri.numeric224 unique values
0 missing
SM09_EA.ed.numeric180 unique values
0 missing
SM04_EA.ed.numeric189 unique values
0 missing
DLS_01numeric3 unique values
0 missing
ATS4pnumeric212 unique values
0 missing
SpMin1_Bh.m.numeric68 unique values
0 missing
ATSC1pnumeric182 unique values
0 missing
ATSC6inumeric238 unique values
0 missing
SpMin2_Bh.e.numeric77 unique values
0 missing
ATS6enumeric216 unique values
0 missing
SM07_EA.ed.numeric182 unique values
0 missing
SM06_EA.ed.numeric190 unique values
0 missing
CATS2D_02_LLnumeric23 unique values
0 missing
SM08_EA.ri.numeric239 unique values
0 missing
ATSC5inumeric230 unique values
0 missing
DBInumeric39 unique values
0 missing
SM07_EA.ri.numeric219 unique values
0 missing
ATSC7inumeric237 unique values
0 missing
nCtnumeric3 unique values
0 missing
SM08_AEA.ed.numeric193 unique values
0 missing
ATSC7pnumeric249 unique values
0 missing
SpMin2_Bh.m.numeric92 unique values
0 missing
Eig01_EA.ed.numeric81 unique values
0 missing
SM10_AEA.dm.numeric81 unique values
0 missing
SpDiam_EA.ed.numeric95 unique values
0 missing
SpMax_EA.ed.numeric81 unique values
0 missing
ATSC6mnumeric253 unique values
0 missing
SM10_EA.ed.numeric177 unique values
0 missing
SM05_EA.ed.numeric182 unique values
0 missing
SpMin2_Bh.s.numeric110 unique values
0 missing
ATSC4inumeric230 unique values
0 missing
ATSC4mnumeric253 unique values
0 missing
SM06_AEA.ed.numeric187 unique values
0 missing
SM12_EA.ed.numeric171 unique values
0 missing
SM13_EA.ed.numeric168 unique values
0 missing

62 properties

259
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
2.72
Maximum kurtosis among attributes of the numeric type.
-4.97
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
-0.09
Third quartile of kurtosis among attributes of the numeric type.
42.41
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
15.16
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.08
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
0.35
Third quartile of skewness among attributes of the numeric type.
1.52
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.73
Third quartile of standard deviation of attributes of the numeric type.
9.61
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.58
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.74
First quartile of means among attributes of the numeric type.
-0.24
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
10.83
Mean of means among attributes of the numeric type.
-0.17
First quartile of skewness among attributes of the numeric type.
0.42
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.31
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.25
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.31
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.16
Mean skewness among attributes of the numeric type.
9.54
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.87
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.19
Second quartile (Median) of skewness among attributes of the numeric type.
0.78
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.83
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task