Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3510

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3510

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3510 (TID: 11063), and it has 397 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric310 unique values
0 missing
molecule_id (row identifier)nominal397 unique values
0 missing
SM06_EA.bo.numeric289 unique values
0 missing
SM12_EA.bo.numeric261 unique values
0 missing
SM07_EA.bo.numeric260 unique values
0 missing
SM09_EA.bo.numeric261 unique values
0 missing
SM13_EA.bo.numeric251 unique values
0 missing
SM14_EA.bo.numeric257 unique values
0 missing
SM15_EA.bo.numeric240 unique values
0 missing
SM10_EA.bo.numeric269 unique values
0 missing
SM08_EA.bo.numeric280 unique values
0 missing
SM11_EA.bo.numeric254 unique values
0 missing
SM15_AEA.ed.numeric279 unique values
0 missing
Eig01_AEA.ed.numeric154 unique values
0 missing
SpMax_AEA.ed.numeric154 unique values
0 missing
SM14_AEA.ed.numeric279 unique values
0 missing
CATS2D_02_APnumeric7 unique values
0 missing
SM13_EA.ed.numeric255 unique values
0 missing
SM14_EA.ed.numeric263 unique values
0 missing
SM15_EA.ed.numeric250 unique values
0 missing
SM13_AEA.ed.numeric284 unique values
0 missing
Eig01_EAnumeric164 unique values
0 missing
SM09_AEA.bo.numeric164 unique values
0 missing
SpMax_EAnumeric164 unique values
0 missing
Eig01_EA.ed.numeric188 unique values
0 missing
SM10_AEA.dm.numeric188 unique values
0 missing
SpMax_EA.ed.numeric188 unique values
0 missing
Eig01_AEA.dm.numeric158 unique values
0 missing
SpMax_AEA.dm.numeric158 unique values
0 missing
SM12_AEA.ed.numeric277 unique values
0 missing
SM11_EA.ed.numeric269 unique values
0 missing
SM12_EA.ed.numeric267 unique values
0 missing
SpDiam_EAnumeric172 unique values
0 missing
Eig01_AEA.bo.numeric153 unique values
0 missing
SpMax_AEA.bo.numeric153 unique values
0 missing
SM11_AEA.ed.numeric284 unique values
0 missing
SM10_EA.ed.numeric284 unique values
0 missing
SpMax1_Bh.p.numeric155 unique values
0 missing
SM10_AEA.ed.numeric284 unique values
0 missing
SM09_EA.ed.numeric270 unique values
0 missing
SpDiam_EA.ed.numeric233 unique values
0 missing
SpMax1_Bh.e.numeric166 unique values
0 missing
N.069numeric4 unique values
0 missing
SM08_EA.ed.numeric285 unique values
0 missing
SM07_EA.ed.numeric273 unique values
0 missing
SM11_EAnumeric282 unique values
0 missing
SM12_EAnumeric290 unique values
0 missing
SM13_EAnumeric285 unique values
0 missing
SM14_EAnumeric292 unique values
0 missing
SM15_EAnumeric276 unique values
0 missing
CATS2D_00_DDnumeric4 unique values
0 missing
CATS2D_00_DPnumeric4 unique values
0 missing
CATS2D_00_PPnumeric4 unique values
0 missing
NsNH2numeric4 unique values
0 missing
P_VSA_e_3numeric81 unique values
0 missing
P_VSA_i_4numeric88 unique values
0 missing
SddssSnumeric209 unique values
0 missing
SM08_AEA.bo.numeric288 unique values
0 missing
SM08_AEA.ed.numeric283 unique values
0 missing
SM08_EAnumeric281 unique values
0 missing
SM09_AEA.ed.numeric291 unique values
0 missing
MAXDNnumeric313 unique values
0 missing
SpMax1_Bh.i.numeric177 unique values
0 missing
SpMax1_Bh.v.numeric176 unique values
0 missing
CATS2D_04_PLnumeric6 unique values
0 missing
SM05_EA.ed.numeric258 unique values
0 missing
SM06_EA.ed.numeric281 unique values
0 missing
SM07_EAnumeric244 unique values
0 missing
SpDiam_AEA.ri.numeric231 unique values
0 missing
SM07_AEA.ed.numeric295 unique values
0 missing
SM03_EA.ed.numeric177 unique values
0 missing

62 properties

397
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.18
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
7.99
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-2.42
Mean skewness among attributes of the numeric type.
12.52
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.48
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-2.24
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.62
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.32
Second quartile (Median) of standard deviation of attributes of the numeric type.
35.04
Maximum kurtosis among attributes of the numeric type.
-3
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
51.04
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
17.5
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
19.59
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-5.59
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.4
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
-1.14
Third quartile of skewness among attributes of the numeric type.
36.93
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
3.59
First quartile of kurtosis among attributes of the numeric type.
2.04
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
4.23
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
11.71
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.81
Mean of means among attributes of the numeric type.
-3.64
First quartile of skewness among attributes of the numeric type.
0.15
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.63
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task