Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1808

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1808

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1808 (TID: 69), and it has 569 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric339 unique values
0 missing
molecule_id (row identifier)nominal569 unique values
0 missing
CATS2D_02_ANnumeric3 unique values
0 missing
GGI4numeric289 unique values
0 missing
Eig02_EA.dm.numeric79 unique values
0 missing
SM12_EA.dm.numeric156 unique values
0 missing
SM14_EA.dm.numeric149 unique values
0 missing
SpDiam_EA.dm.numeric76 unique values
0 missing
CATS2D_02_AAnumeric7 unique values
0 missing
CATS2D_05_ANnumeric5 unique values
0 missing
CATS2D_03_AAnumeric7 unique values
0 missing
SsssNnumeric264 unique values
0 missing
ATSC6snumeric485 unique values
0 missing
SM11_AEA.ed.numeric359 unique values
0 missing
SM12_EAnumeric371 unique values
0 missing
ATS6snumeric411 unique values
0 missing
GGI9numeric210 unique values
0 missing
SdOnumeric477 unique values
0 missing
SM11_EAnumeric360 unique values
0 missing
SM09_AEA.ed.numeric372 unique values
0 missing
CATS2D_01_ANnumeric4 unique values
0 missing
CATS2D_05_NLnumeric8 unique values
0 missing
O.057numeric5 unique values
0 missing
CATS2D_01_DNnumeric5 unique values
0 missing
SM10_AEA.ed.numeric364 unique values
0 missing
SM04_EA.ed.numeric364 unique values
0 missing
SM03_EA.dm.numeric78 unique values
0 missing
P_VSA_e_5numeric75 unique values
0 missing
SpMax6_Bh.m.numeric313 unique values
0 missing
SM08_EA.dm.numeric176 unique values
0 missing
SM05_EA.ed.numeric354 unique values
0 missing
Eig06_AEA.dm.numeric356 unique values
0 missing
NsssNnumeric5 unique values
0 missing
X0solnumeric330 unique values
0 missing
SM15_EAnumeric375 unique values
0 missing
Eta_C_Anumeric313 unique values
0 missing
ATSC7enumeric402 unique values
0 missing
MAXDPnumeric437 unique values
0 missing
Eig05_AEA.dm.numeric336 unique values
0 missing
SM06_EA.ed.numeric366 unique values
0 missing
SM10_EAnumeric371 unique values
0 missing
ATSC6mnumeric485 unique values
0 missing
X1solnumeric396 unique values
0 missing
SpMin5_Bh.i.numeric333 unique values
0 missing
Eig08_AEA.dm.numeric352 unique values
0 missing
P_VSA_m_3numeric89 unique values
0 missing
SM09_EAnumeric364 unique values
0 missing
Eig12_AEA.dm.numeric309 unique values
0 missing
Eig14_AEA.dm.numeric346 unique values
0 missing
Eig10_EA.ri.numeric321 unique values
0 missing
Eig10_AEA.bo.numeric306 unique values
0 missing
Eig04_AEA.ri.numeric338 unique values
0 missing
Eig10_EA.ed.numeric321 unique values
0 missing
SM05_AEA.ri.numeric321 unique values
0 missing
Eig04_EAnumeric305 unique values
0 missing
SM12_AEA.bo.numeric305 unique values
0 missing
Eta_alphanumeric237 unique values
0 missing
IACnumeric386 unique values
0 missing
TIC0numeric386 unique values
0 missing
Eig10_AEA.ed.numeric309 unique values
0 missing
SM07_EA.dm.numeric141 unique values
0 missing
SM07_AEA.ed.numeric350 unique values
0 missing
SpMin5_Bh.p.numeric317 unique values
0 missing
Eig11_EA.ed.numeric299 unique values
0 missing
SM06_AEA.ri.numeric299 unique values
0 missing
MWnumeric387 unique values
0 missing
Eig04_EA.ri.numeric358 unique values
0 missing
IC4numeric342 unique values
0 missing
SpMaxA_EA.bo.numeric155 unique values
0 missing
Eig10_EA.bo.numeric309 unique values
0 missing

62 properties

569
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.12
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.67
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.04
Mean skewness among attributes of the numeric type.
3.08
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.15
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.42
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.59
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.68
Second quartile (Median) of standard deviation of attributes of the numeric type.
19.21
Maximum kurtosis among attributes of the numeric type.
0.15
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
394.35
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.12
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
13.35
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.68
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.94
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.11
Third quartile of skewness among attributes of the numeric type.
117.21
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1
First quartile of kurtosis among attributes of the numeric type.
1.87
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.24
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.85
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
20.15
Mean of means among attributes of the numeric type.
-0.77
First quartile of skewness among attributes of the numeric type.
-0.54
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.5
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task