Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4303

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4303

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4303 (TID: 11748), and it has 324 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric187 unique values
0 missing
molecule_id (row identifier)nominal324 unique values
0 missing
MATS3vnumeric217 unique values
0 missing
C.026numeric8 unique values
0 missing
CATS2D_06_LLnumeric26 unique values
0 missing
CATS2D_07_DDnumeric4 unique values
0 missing
D.Dtr05numeric192 unique values
0 missing
GATS3vnumeric226 unique values
0 missing
CATS2D_05_LLnumeric20 unique values
0 missing
ATS6mnumeric278 unique values
0 missing
NaasCnumeric13 unique values
0 missing
MATS6snumeric202 unique values
0 missing
P_VSA_MR_6numeric211 unique values
0 missing
SssNHnumeric175 unique values
0 missing
ATS7mnumeric287 unique values
0 missing
RBFnumeric95 unique values
0 missing
C.040numeric6 unique values
0 missing
SpMin1_Bh.m.numeric114 unique values
0 missing
P_VSA_s_4numeric178 unique values
0 missing
GATS6snumeric268 unique values
0 missing
ATS5mnumeric279 unique values
0 missing
MATS6mnumeric218 unique values
0 missing
Eig01_EA.bo.numeric86 unique values
0 missing
SM11_AEA.ri.numeric86 unique values
0 missing
SpDiam_EA.bo.numeric87 unique values
0 missing
SpMax_EA.bo.numeric86 unique values
0 missing
GATS3pnumeric221 unique values
0 missing
SpMax3_Bh.i.numeric142 unique values
0 missing
nArCONHRnumeric4 unique values
0 missing
ARRnumeric90 unique values
0 missing
ATSC2enumeric247 unique values
0 missing
GATS5vnumeric196 unique values
0 missing
StNnumeric38 unique values
0 missing
nArCONR2numeric2 unique values
0 missing
Eig02_AEA.bo.numeric135 unique values
0 missing
P_VSA_s_5numeric31 unique values
0 missing
MATS3pnumeric213 unique values
0 missing
SRW09numeric35 unique values
0 missing
TRSnumeric21 unique values
0 missing
GATS3inumeric221 unique values
0 missing
CATS2D_03_LLnumeric18 unique values
0 missing
nHAccnumeric16 unique values
0 missing
GATS6vnumeric227 unique values
0 missing
C.numeric92 unique values
0 missing
ATSC8enumeric288 unique values
0 missing
LOCnumeric173 unique values
0 missing
IACnumeric244 unique values
0 missing
TIC0numeric244 unique values
0 missing
O.060numeric5 unique values
0 missing
SpMax7_Bh.m.numeric217 unique values
0 missing
SpMin1_Bh.i.numeric86 unique values
0 missing
X0solnumeric185 unique values
0 missing
CATS2D_03_AAnumeric6 unique values
0 missing
GGI7numeric169 unique values
0 missing
ATSC3enumeric256 unique values
0 missing
nPyrazolesnumeric2 unique values
0 missing
nCsp2numeric21 unique values
0 missing
Eig04_EA.bo.numeric155 unique values
0 missing
SM14_AEA.ri.numeric155 unique values
0 missing
ATSC5enumeric285 unique values
0 missing
MATS3mnumeric198 unique values
0 missing
Eta_betaP_Anumeric149 unique values
0 missing
Eta_Lnumeric294 unique values
0 missing
SpMin4_Bh.i.numeric159 unique values
0 missing
SpMAD_EA.bo.numeric192 unique values
0 missing
SpDiam_AEA.ed.numeric136 unique values
0 missing
SM15_EAnumeric194 unique values
0 missing
CATS2D_01_DAnumeric2 unique values
0 missing
ATSC2snumeric309 unique values
0 missing

62 properties

324
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.21
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.96
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.18
Mean skewness among attributes of the numeric type.
2.27
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.41
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.15
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.15
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.39
Second quartile (Median) of standard deviation of attributes of the numeric type.
16.3
Maximum kurtosis among attributes of the numeric type.
-0.07
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
93.45
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.5
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
7.19
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.79
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.55
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.1
Third quartile of skewness among attributes of the numeric type.
57.87
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.26
First quartile of kurtosis among attributes of the numeric type.
2.73
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.81
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.18
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
11.24
Mean of means among attributes of the numeric type.
-0.69
First quartile of skewness among attributes of the numeric type.
0.26
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.16
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task