Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2243

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2243

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2243 (TID: 11291), and it has 898 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric478 unique values
0 missing
molecule_id (row identifier)nominal898 unique values
0 missing
HVcpxnumeric432 unique values
0 missing
AECCnumeric477 unique values
0 missing
IDEnumeric459 unique values
0 missing
RDCHInumeric482 unique values
0 missing
UNIPnumeric176 unique values
0 missing
TIC3numeric644 unique values
0 missing
ECCnumeric330 unique values
0 missing
TIC4numeric557 unique values
0 missing
TIC5numeric523 unique values
0 missing
Chi1_EA.ed.numeric529 unique values
0 missing
SpMin7_Bh.p.numeric380 unique values
0 missing
O.060numeric5 unique values
0 missing
Svnumeric611 unique values
0 missing
SpMin8_Bh.i.numeric333 unique values
0 missing
SpMax4_Bh.e.numeric388 unique values
0 missing
SpMax7_Bh.v.numeric390 unique values
0 missing
CSInumeric441 unique values
0 missing
MSDnumeric546 unique values
0 missing
X1Pernumeric717 unique values
0 missing
SpMin8_Bh.e.numeric353 unique values
0 missing
SpMax7_Bh.i.numeric381 unique values
0 missing
Chi0_EA.ed.numeric542 unique values
0 missing
X1MulPernumeric709 unique values
0 missing
SpMin8_Bh.v.numeric376 unique values
0 missing
X1Kupnumeric715 unique values
0 missing
SpMin3_Bh.v.numeric264 unique values
0 missing
MAXDPnumeric684 unique values
0 missing
P_VSA_LogP_5numeric364 unique values
0 missing
SpMin3_Bh.e.numeric312 unique values
0 missing
SpMax7_Bh.p.numeric396 unique values
0 missing
SpMax4_Bh.i.numeric368 unique values
0 missing
Yindexnumeric343 unique values
0 missing
ATS1vnumeric450 unique values
0 missing
SpMin2_Bh.e.numeric220 unique values
0 missing
SpMin3_Bh.i.numeric330 unique values
0 missing
SpMax3_Bh.v.numeric340 unique values
0 missing
VARnumeric164 unique values
0 missing
ATSC8vnumeric789 unique values
0 missing
IDMTnumeric570 unique values
0 missing
Xunumeric566 unique values
0 missing
TIC2numeric712 unique values
0 missing
TIC1numeric680 unique values
0 missing
SpMin7_Bh.s.numeric360 unique values
0 missing
ON1Vnumeric614 unique values
0 missing
IC4numeric454 unique values
0 missing
IDETnumeric568 unique values
0 missing
SpMaxA_AEA.dm.numeric171 unique values
0 missing
CENTnumeric496 unique values
0 missing
Spnumeric588 unique values
0 missing
ATS8vnumeric581 unique values
0 missing
SpMin7_Bh.i.numeric365 unique values
0 missing
Vindexnumeric219 unique values
0 missing
SpMin2_Bh.i.numeric244 unique values
0 missing
ATS1enumeric425 unique values
0 missing
ON1numeric179 unique values
0 missing
SpMax2_Bh.v.numeric305 unique values
0 missing
SMTInumeric561 unique values
0 missing
SpMaxA_EA.ed.numeric257 unique values
0 missing
SpMax5_Bh.v.numeric457 unique values
0 missing
nCnumeric28 unique values
0 missing
Xindexnumeric287 unique values
0 missing
ATS1inumeric442 unique values
0 missing
IC3numeric512 unique values
0 missing
ZM2Kupnumeric749 unique values
0 missing
SpMax6_Bh.v.numeric409 unique values
0 missing
Eig10_EA.ed.numeric391 unique values
0 missing
SM05_AEA.ri.numeric391 unique values
0 missing
Eig10_AEA.ri.numeric438 unique values
0 missing

62 properties

898
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.08
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.87
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.59
Mean skewness among attributes of the numeric type.
3.97
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
260.71
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.49
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.02
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.64
Second quartile (Median) of standard deviation of attributes of the numeric type.
15.98
Maximum kurtosis among attributes of the numeric type.
0.15
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
19467.2
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.18
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
28.65
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.13
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.79
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.3
Third quartile of skewness among attributes of the numeric type.
10800.97
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.98
First quartile of kurtosis among attributes of the numeric type.
5.15
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.77
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.7
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
510.69
Mean of means among attributes of the numeric type.
-1.8
First quartile of skewness among attributes of the numeric type.
-0.14
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task