Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3621

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3621

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3621 (TID: 10530), and it has 90 rows and 61 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

63 features

pXC50 (target)numeric74 unique values
0 missing
molecule_id (row identifier)nominal90 unique values
0 missing
ATS3mnumeric71 unique values
0 missing
ATS5mnumeric71 unique values
0 missing
ATS6mnumeric78 unique values
0 missing
ATS7mnumeric73 unique values
0 missing
ATS8mnumeric75 unique values
0 missing
X5Anumeric9 unique values
0 missing
SpMax3_Bh.m.numeric36 unique values
0 missing
Eig05_AEA.dm.numeric28 unique values
0 missing
Eig06_AEA.dm.numeric28 unique values
0 missing
Eig07_AEA.dm.numeric36 unique values
0 missing
SsssCHnumeric86 unique values
0 missing
SpMax1_Bh.p.numeric39 unique values
0 missing
GATS3snumeric55 unique values
0 missing
ATSC6snumeric86 unique values
0 missing
Eig09_AEA.dm.numeric32 unique values
0 missing
P_VSA_LogP_2numeric42 unique values
0 missing
X3Anumeric11 unique values
0 missing
IC4numeric67 unique values
0 missing
CATS2D_02_LLnumeric16 unique values
0 missing
SpMAD_EA.ri.numeric30 unique values
0 missing
SpMax4_Bh.p.numeric37 unique values
0 missing
GATS3inumeric49 unique values
0 missing
Eta_sh_ynumeric36 unique values
0 missing
CATS2D_03_APnumeric4 unique values
0 missing
CATS2D_04_PLnumeric9 unique values
0 missing
SM05_EA.ed.numeric64 unique values
0 missing
SM06_EA.ed.numeric70 unique values
0 missing
SM09_AEA.ed.numeric61 unique values
0 missing
SM10_AEA.ed.numeric65 unique values
0 missing
SM10_EA.ri.numeric74 unique values
0 missing
SM11_AEA.ed.numeric65 unique values
0 missing
SM11_EAnumeric69 unique values
0 missing
SM11_EA.ri.numeric79 unique values
0 missing
SM12_AEA.ed.numeric66 unique values
0 missing
SM12_EAnumeric72 unique values
0 missing
SM12_EA.ri.numeric77 unique values
0 missing
SM13_EAnumeric71 unique values
0 missing
SM13_EA.ri.numeric79 unique values
0 missing
SM14_EA.ri.numeric81 unique values
0 missing
SM15_EA.ri.numeric78 unique values
0 missing
Eig01_AEA.ri.numeric28 unique values
0 missing
Eig01_EA.ri.numeric29 unique values
0 missing
SpDiam_AEA.ri.numeric31 unique values
0 missing
SpMax_AEA.ri.numeric28 unique values
0 missing
SpMax_EA.ri.numeric29 unique values
0 missing
SpMAD_AEA.ed.numeric37 unique values
0 missing
SpMAD_AEA.ri.numeric25 unique values
0 missing
IC3numeric66 unique values
0 missing
SM07_EA.ed.numeric69 unique values
0 missing
SM08_EA.ed.numeric68 unique values
0 missing
SM09_EA.ed.numeric70 unique values
0 missing
SM10_EA.ed.numeric72 unique values
0 missing
SM11_EA.ed.numeric69 unique values
0 missing
SM12_EA.ed.numeric71 unique values
0 missing
SM13_AEA.ed.numeric67 unique values
0 missing
SM13_EA.ed.numeric69 unique values
0 missing
SM14_AEA.ed.numeric70 unique values
0 missing
SM14_EAnumeric71 unique values
0 missing
SM15_AEA.ed.numeric70 unique values
0 missing
SM15_EAnumeric71 unique values
0 missing
Eig01_AEA.bo.numeric35 unique values
0 missing

62 properties

90
Number of instances (rows) of the dataset.
63
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
62
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.7
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.45
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.68
Mean skewness among attributes of the numeric type.
8.13
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.44
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.11
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.96
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.38
Second quartile (Median) of standard deviation of attributes of the numeric type.
42.43
Maximum kurtosis among attributes of the numeric type.
-18.89
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
798.98
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
7.46
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.41
Percentage of numeric attributes.
18.64
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-6.42
Minimum skewness among attributes of the numeric type.
1.59
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.9
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.7
Third quartile of skewness among attributes of the numeric type.
227.01
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.83
First quartile of kurtosis among attributes of the numeric type.
0.56
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.71
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
5.2
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
33.23
Mean of means among attributes of the numeric type.
-2.08
First quartile of skewness among attributes of the numeric type.
-0.27
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task