Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1886

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1886

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1886 (TID: 285), and it has 110 rows and 60 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

62 features

pXC50 (target)numeric91 unique values
0 missing
molecule_id (row identifier)nominal110 unique values
0 missing
ATS6pnumeric90 unique values
0 missing
ATS7pnumeric95 unique values
0 missing
PHInumeric75 unique values
0 missing
X4Anumeric18 unique values
0 missing
Eig15_EA.ri.numeric53 unique values
0 missing
SpMin1_Bh.e.numeric27 unique values
0 missing
S3Knumeric84 unique values
0 missing
X3Anumeric20 unique values
0 missing
MATS3enumeric76 unique values
0 missing
SpMAD_AEA.ri.numeric65 unique values
0 missing
SAtotnumeric77 unique values
0 missing
SsssCHnumeric61 unique values
0 missing
AMRnumeric85 unique values
0 missing
VvdwMGnumeric76 unique values
0 missing
Vxnumeric76 unique values
0 missing
IC4numeric47 unique values
0 missing
GATS3enumeric86 unique values
0 missing
SpMin1_Bh.m.numeric35 unique values
0 missing
GATS1inumeric68 unique values
0 missing
IVDEnumeric32 unique values
0 missing
PW2numeric38 unique values
0 missing
SpMax8_Bh.m.numeric55 unique values
0 missing
SpMAD_EA.ed.numeric58 unique values
0 missing
X1Anumeric27 unique values
0 missing
HVcpxnumeric60 unique values
0 missing
ATSC7enumeric103 unique values
0 missing
ICRnumeric54 unique values
0 missing
IDEnumeric58 unique values
0 missing
MATS7inumeric87 unique values
0 missing
X5Anumeric17 unique values
0 missing
PW3numeric39 unique values
0 missing
MATS3snumeric84 unique values
0 missing
SpMAD_EAnumeric43 unique values
0 missing
ATSC1snumeric90 unique values
0 missing
X1solnumeric61 unique values
0 missing
AECCnumeric57 unique values
0 missing
DECCnumeric56 unique values
0 missing
SpMAD_EA.ri.numeric65 unique values
0 missing
X2solnumeric75 unique values
0 missing
Eig02_EA.ri.numeric60 unique values
0 missing
SpMax3_Bh.p.numeric35 unique values
0 missing
Eta_B_Anumeric23 unique values
0 missing
SpDiam_AEA.ed.numeric15 unique values
0 missing
SpMin1_Bh.v.numeric37 unique values
0 missing
IC3numeric53 unique values
0 missing
RBFnumeric33 unique values
0 missing
RBNnumeric9 unique values
0 missing
ATSC7snumeric108 unique values
0 missing
IC5numeric46 unique values
0 missing
ATSC7mnumeric108 unique values
0 missing
P_VSA_LogP_7numeric26 unique values
0 missing
SpMaxA_EA.ed.numeric24 unique values
0 missing
SpMaxA_EA.ri.numeric30 unique values
0 missing
MATS4inumeric87 unique values
0 missing
X0solnumeric51 unique values
0 missing
SM14_EA.ri.numeric90 unique values
0 missing
SpMax1_Bh.v.numeric41 unique values
0 missing
SpMin8_Bh.e.numeric47 unique values
0 missing
SM03_EA.ri.numeric63 unique values
0 missing
SpMax1_Bh.i.numeric43 unique values
0 missing

62 properties

110
Number of instances (rows) of the dataset.
62
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
61
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.56
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-1.23
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.02
Mean skewness among attributes of the numeric type.
2.86
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
7.04
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.02
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.95
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.22
Second quartile (Median) of standard deviation of attributes of the numeric type.
10.1
Maximum kurtosis among attributes of the numeric type.
-0.6
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
506.43
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.27
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.39
Percentage of numeric attributes.
6.5
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.56
Minimum skewness among attributes of the numeric type.
1.61
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.59
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.29
Third quartile of skewness among attributes of the numeric type.
152.4
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.74
First quartile of kurtosis among attributes of the numeric type.
1.48
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.54
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.1
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
32.23
Mean of means among attributes of the numeric type.
-0.21
First quartile of skewness among attributes of the numeric type.
0.38
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.08
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task