Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1864

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1864

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1864 (TID: 265), and it has 289 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric171 unique values
0 missing
molecule_id (row identifier)nominal289 unique values
0 missing
ATS4enumeric219 unique values
0 missing
ATS3enumeric202 unique values
0 missing
ATS4inumeric223 unique values
0 missing
ATS1vnumeric164 unique values
0 missing
X1MulPernumeric242 unique values
0 missing
ATSC7mnumeric284 unique values
0 missing
Eig05_EA.ri.numeric224 unique values
0 missing
ATS2vnumeric179 unique values
0 missing
X1Pernumeric235 unique values
0 missing
TIC2numeric221 unique values
0 missing
ATS2enumeric180 unique values
0 missing
Senumeric195 unique values
0 missing
ATS1inumeric174 unique values
0 missing
X1Kupnumeric236 unique values
0 missing
TIC5numeric150 unique values
0 missing
ON1Vnumeric215 unique values
0 missing
TIC4numeric155 unique values
0 missing
Sinumeric198 unique values
0 missing
SpMax8_Bh.e.numeric144 unique values
0 missing
ATS1enumeric161 unique values
0 missing
ATS3inumeric207 unique values
0 missing
SpMax7_Bh.v.numeric169 unique values
0 missing
Svnumeric198 unique values
0 missing
TIC3numeric188 unique values
0 missing
ATS2inumeric184 unique values
0 missing
nBTnumeric37 unique values
0 missing
ATS1pnumeric166 unique values
0 missing
ISIZnumeric36 unique values
0 missing
nATnumeric36 unique values
0 missing
SpMin8_Bh.e.numeric132 unique values
0 missing
ATSC7pnumeric282 unique values
0 missing
X4numeric185 unique values
0 missing
Eig06_AEA.ed.numeric153 unique values
0 missing
ATSC2pnumeric221 unique values
0 missing
SpMin8_Bh.p.numeric138 unique values
0 missing
SpMax7_Bh.e.numeric187 unique values
0 missing
SpMin8_Bh.i.numeric128 unique values
0 missing
X1Madnumeric257 unique values
0 missing
Spnumeric194 unique values
0 missing
TIC1numeric205 unique values
0 missing
Eig09_EA.ed.numeric181 unique values
0 missing
SM04_AEA.ri.numeric181 unique values
0 missing
SpMin8_Bh.v.numeric145 unique values
0 missing
Eta_Lnumeric254 unique values
0 missing
P_VSA_p_1numeric73 unique values
0 missing
Eig09_AEA.ed.numeric159 unique values
0 missing
SpMin4_Bh.s.numeric147 unique values
0 missing
ON0Vnumeric179 unique values
0 missing
nCsp3numeric11 unique values
0 missing
Eta_beta_Anumeric128 unique values
0 missing
SpMax8_Bh.i.numeric135 unique values
0 missing
ATSC4pnumeric280 unique values
0 missing
CMC.80numeric2 unique values
0 missing
SM02_EA.ri.numeric178 unique values
0 missing
ATSC3pnumeric258 unique values
0 missing
Psi_i_1numeric247 unique values
0 missing
Eta_C_Anumeric201 unique values
0 missing
ATS5inumeric235 unique values
0 missing
Eta_FL_Anumeric77 unique values
0 missing
ATS2pnumeric180 unique values
0 missing
Eig11_EA.ri.numeric168 unique values
0 missing
SpMax7_Bh.i.numeric171 unique values
0 missing
Psi_i_0numeric202 unique values
0 missing
ATS5pnumeric229 unique values
0 missing
VvdwMGnumeric187 unique values
0 missing

62 properties

289
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.23
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
3.22
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-1.29
Mean skewness among attributes of the numeric type.
4.81
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
7.02
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-1.31
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2.01
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.54
Second quartile (Median) of standard deviation of attributes of the numeric type.
11.35
Maximum kurtosis among attributes of the numeric type.
0.28
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
269.19
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.67
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
18.35
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.23
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.68
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
-0.47
Third quartile of skewness among attributes of the numeric type.
56.99
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.75
First quartile of kurtosis among attributes of the numeric type.
2.66
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.01
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.95
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
35.94
Mean of means among attributes of the numeric type.
-2.07
First quartile of skewness among attributes of the numeric type.
0.18
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task