Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3503

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3503

deactivated ARFF Publicly available Visibility: public Uploaded 16-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3503 (TID: 12546), and it has 56 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric43 unique values
0 missing
molecule_id (row identifier)nominal56 unique values
0 missing
GATS3enumeric51 unique values
0 missing
ATSC8pnumeric51 unique values
0 missing
Eig13_AEA.dm.numeric39 unique values
0 missing
Chi0_EA.dm.numeric46 unique values
0 missing
Eig12_EA.bo.numeric40 unique values
0 missing
ATS1pnumeric49 unique values
0 missing
Spnumeric49 unique values
0 missing
SpMax6_Bh.m.numeric54 unique values
0 missing
Svnumeric50 unique values
0 missing
X0numeric36 unique values
0 missing
X0solnumeric44 unique values
0 missing
X0vnumeric51 unique values
0 missing
X1vnumeric53 unique values
0 missing
Eig12_AEA.dm.numeric45 unique values
0 missing
VvdwZAZnumeric50 unique values
0 missing
Eig12_EA.ri.numeric41 unique values
0 missing
Eig13_AEA.ri.numeric43 unique values
0 missing
SpMax5_Bh.m.numeric51 unique values
0 missing
SpMax8_Bh.p.numeric49 unique values
0 missing
Eig13_EA.bo.numeric38 unique values
0 missing
ATS2pnumeric52 unique values
0 missing
ATS3pnumeric52 unique values
0 missing
ATS3vnumeric53 unique values
0 missing
ATS4vnumeric52 unique values
0 missing
GATS5snumeric52 unique values
0 missing
Eig12_AEA.ri.numeric42 unique values
0 missing
Eig13_EA.ri.numeric42 unique values
0 missing
PHInumeric51 unique values
0 missing
SpMax2_Bh.p.numeric49 unique values
0 missing
SpMax2_Bh.v.numeric52 unique values
0 missing
SpMax8_Bh.v.numeric54 unique values
0 missing
GATS8enumeric45 unique values
0 missing
ATS1vnumeric50 unique values
0 missing
ATS8pnumeric48 unique values
0 missing
ATS8vnumeric48 unique values
0 missing
ATSC7pnumeric51 unique values
0 missing
ON1numeric36 unique values
0 missing
SpMax7_Bh.e.numeric46 unique values
0 missing
SpMax7_Bh.p.numeric52 unique values
0 missing
SpMax7_Bh.v.numeric52 unique values
0 missing
X1Kupnumeric53 unique values
0 missing
MATS6mnumeric54 unique values
0 missing
ATSC8vnumeric51 unique values
0 missing
Chi1_EA.bo.numeric45 unique values
0 missing
RDCHInumeric43 unique values
0 missing
Eig13_EAnumeric32 unique values
0 missing
SM07_AEA.dm.numeric32 unique values
0 missing
GATS8inumeric43 unique values
0 missing
MATS5enumeric51 unique values
0 missing
MSDnumeric43 unique values
0 missing
Eig13_EA.ed.numeric35 unique values
0 missing
SM08_AEA.ri.numeric35 unique values
0 missing
Eig12_EAnumeric30 unique values
0 missing
Eig12_EA.ed.numeric36 unique values
0 missing
SM06_AEA.dm.numeric30 unique values
0 missing
SM07_AEA.ri.numeric36 unique values
0 missing
SpMax2_Bh.e.numeric49 unique values
0 missing
SpMax2_Bh.i.numeric52 unique values
0 missing
ATS8mnumeric48 unique values
0 missing
ON0numeric31 unique values
0 missing
SpMax4_Bh.m.numeric53 unique values
0 missing
SpMax5_Bh.p.numeric46 unique values
0 missing
SpMax6_Bh.v.numeric46 unique values
0 missing
SpMax7_Bh.m.numeric44 unique values
0 missing

62 properties

56
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
1.18
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.45
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.13
Mean skewness among attributes of the numeric type.
2.5
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.92
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.07
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.45
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
3.43
Maximum kurtosis among attributes of the numeric type.
-3.12
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
221.76
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-0.22
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
3.71
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.28
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.43
Maximum skewness among attributes of the numeric type.
0.12
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.53
Third quartile of skewness among attributes of the numeric type.
54.6
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.82
First quartile of kurtosis among attributes of the numeric type.
1.81
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
-0.08
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.31
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.42
Mean of means among attributes of the numeric type.
-0.26
First quartile of skewness among attributes of the numeric type.
-0.44
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.36
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task