Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2973

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2973

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2973 (TID: 11149), and it has 1521 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric360 unique values
0 missing
molecule_id (row identifier)nominal1521 unique values
0 missing
NaaNHnumeric3 unique values
0 missing
SpMax2_Bh.i.numeric294 unique values
0 missing
SpMax2_Bh.p.numeric356 unique values
0 missing
SpMax2_Bh.e.numeric303 unique values
0 missing
SpMin2_Bh.i.numeric327 unique values
0 missing
SpMin2_Bh.v.numeric255 unique values
0 missing
CATS2D_09_LLnumeric27 unique values
0 missing
C.025numeric9 unique values
0 missing
SpMax2_Bh.v.numeric339 unique values
0 missing
SaasCnumeric1326 unique values
0 missing
SaaNHnumeric400 unique values
0 missing
NsssCHnumeric12 unique values
0 missing
CATS2D_07_DDnumeric13 unique values
0 missing
CATS2D_08_LLnumeric25 unique values
0 missing
SsssCHnumeric512 unique values
0 missing
D.Dtr10numeric369 unique values
0 missing
CATS2D_01_DAnumeric3 unique values
0 missing
SpMin2_Bh.m.numeric282 unique values
0 missing
Yindexnumeric496 unique values
0 missing
CATS2D_03_LLnumeric27 unique values
0 missing
IC2numeric813 unique values
0 missing
C.033numeric4 unique values
0 missing
nN.C.N.numeric2 unique values
0 missing
CATS2D_08_ALnumeric22 unique values
0 missing
CATS2D_07_LLnumeric26 unique values
0 missing
X.numeric82 unique values
0 missing
JGI3numeric61 unique values
0 missing
H.048numeric4 unique values
0 missing
nPyrazolesnumeric3 unique values
0 missing
AACnumeric485 unique values
0 missing
IC0numeric485 unique values
0 missing
CATS2D_01_LLnumeric25 unique values
0 missing
SpMin2_Bh.p.numeric261 unique values
0 missing
CATS2D_02_LLnumeric29 unique values
0 missing
Vindexnumeric227 unique values
0 missing
CATS2D_05_DLnumeric26 unique values
0 missing
SRW09numeric117 unique values
0 missing
SpMin2_Bh.e.numeric311 unique values
0 missing
Menumeric80 unique values
0 missing
SpMax3_Bh.s.numeric525 unique values
0 missing
Eig01_AEA.bo.numeric444 unique values
0 missing
SpMax_AEA.bo.numeric444 unique values
0 missing
ATSC3vnumeric1355 unique values
0 missing
SRW07numeric32 unique values
0 missing
nArXnumeric5 unique values
0 missing
P_VSA_LogP_6numeric234 unique values
0 missing
Psi_e_Anumeric629 unique values
0 missing
Psi_i_Anumeric629 unique values
0 missing
SpMAD_AEA.dm.numeric235 unique values
0 missing
X5Avnumeric33 unique values
0 missing
CATS2D_06_AAnumeric10 unique values
0 missing
nXnumeric7 unique values
0 missing
nR10numeric4 unique values
0 missing
SM10_EA.dm.numeric363 unique values
0 missing
D.Dtr05numeric932 unique values
0 missing
ATSC5vnumeric1398 unique values
0 missing
ATSC4vnumeric1388 unique values
0 missing
HNarnumeric244 unique values
0 missing
SpMax1_Bh.s.numeric212 unique values
0 missing
Xindexnumeric289 unique values
0 missing
X4Avnumeric45 unique values
0 missing
CATS2D_05_ALnumeric22 unique values
0 missing
CATS2D_03_DLnumeric25 unique values
0 missing
SaaCHnumeric1405 unique values
0 missing
Eta_epsi_Anumeric208 unique values
0 missing
SM06_EA.dm.numeric499 unique values
0 missing
ATSC4mnumeric1434 unique values
0 missing
GATS5inumeric461 unique values
0 missing
SpMaxA_AEA.dm.numeric169 unique values
0 missing
ATSC5mnumeric1450 unique values
0 missing

62 properties

1521
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.05
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.2
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.03
Mean skewness among attributes of the numeric type.
2.69
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.89
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.91
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.53
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.72
Second quartile (Median) of standard deviation of attributes of the numeric type.
254.37
Maximum kurtosis among attributes of the numeric type.
-0.16
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
72.07
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
7.47
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
5.67
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-8.4
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
12.92
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.58
Third quartile of skewness among attributes of the numeric type.
129.78
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.41
First quartile of kurtosis among attributes of the numeric type.
3.29
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.62
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
12.21
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
5.77
Mean of means among attributes of the numeric type.
-0.08
First quartile of skewness among attributes of the numeric type.
0.02
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.1
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task