Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4801

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4801

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4801 (TID: 11624), and it has 742 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric411 unique values
0 missing
molecule_id (row identifier)nominal742 unique values
0 missing
H.051numeric10 unique values
0 missing
NsssCHnumeric10 unique values
0 missing
C.040numeric9 unique values
0 missing
CATS2D_08_DAnumeric9 unique values
0 missing
CATS2D_03_DAnumeric7 unique values
0 missing
CATS2D_06_DDnumeric5 unique values
0 missing
nROHnumeric5 unique values
0 missing
CATS2D_02_DAnumeric10 unique values
0 missing
nHAccnumeric18 unique values
0 missing
Eig12_AEA.dm.numeric381 unique values
0 missing
SsOHnumeric485 unique values
0 missing
CATS2D_06_DLnumeric13 unique values
0 missing
NsOHnumeric5 unique values
0 missing
ATS5snumeric517 unique values
0 missing
Eig12_EA.ri.numeric415 unique values
0 missing
Eig12_AEA.ri.numeric422 unique values
0 missing
Eig12_EAnumeric356 unique values
0 missing
SM06_AEA.dm.numeric356 unique values
0 missing
nSO2Nnumeric2 unique values
0 missing
Eig09_EA.dm.numeric104 unique values
0 missing
SdssCnumeric648 unique values
0 missing
CATS2D_08_DLnumeric15 unique values
0 missing
Eta_sh_xnumeric64 unique values
0 missing
ATSC5mnumeric720 unique values
0 missing
nRCONHRnumeric6 unique values
0 missing
P_VSA_p_2numeric228 unique values
0 missing
SpMAD_EA.dm.numeric369 unique values
0 missing
P_VSA_v_2numeric258 unique values
0 missing
GATS2pnumeric348 unique values
0 missing
N.072numeric9 unique values
0 missing
SddssSnumeric162 unique values
0 missing
SAaccnumeric254 unique values
0 missing
GATS2vnumeric291 unique values
0 missing
C.026numeric7 unique values
0 missing
PDInumeric171 unique values
0 missing
SssNHnumeric536 unique values
0 missing
SpMax1_Bh.p.numeric227 unique values
0 missing
NddssSnumeric2 unique values
0 missing
S.110numeric2 unique values
0 missing
CATS2D_09_DAnumeric11 unique values
0 missing
P_VSA_s_1numeric3 unique values
0 missing
Eig11_EA.ed.numeric457 unique values
0 missing
SM06_AEA.ri.numeric457 unique values
0 missing
MATS1enumeric192 unique values
0 missing
Eig11_AEA.bo.numeric347 unique values
0 missing
Eta_C_Anumeric414 unique values
0 missing
LLS_02numeric5 unique values
0 missing
ATSC5enumeric539 unique values
0 missing
SpMin8_Bh.m.numeric337 unique values
0 missing
CATS2D_07_DLnumeric12 unique values
0 missing
C.039numeric3 unique values
0 missing
nArCOnumeric3 unique values
0 missing
nNnumeric10 unique values
0 missing
CATS2D_05_AAnumeric11 unique values
0 missing
nN.C.N.numeric2 unique values
0 missing
SpMax1_Bh.e.numeric208 unique values
0 missing
CATS2D_07_DAnumeric7 unique values
0 missing
P_VSA_LogP_2numeric298 unique values
0 missing
nCsnumeric15 unique values
0 missing
ATSC8snumeric723 unique values
0 missing
nArCONHRnumeric3 unique values
0 missing
SAdonnumeric47 unique values
0 missing
ATSC8vnumeric716 unique values
0 missing
SpMin5_Bh.m.numeric339 unique values
0 missing
SpMax6_Bh.s.numeric249 unique values
0 missing
P_VSA_s_5numeric30 unique values
0 missing
DLS_06numeric6 unique values
0 missing
Eig04_EA.dm.numeric115 unique values
0 missing

62 properties

742
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.09
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.59
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.37
Mean skewness among attributes of the numeric type.
1.58
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.29
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.51
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.3
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.04
Second quartile (Median) of standard deviation of attributes of the numeric type.
36.69
Maximum kurtosis among attributes of the numeric type.
-2.6
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
210.43
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.7
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
4.01
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.03
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.36
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.19
Third quartile of skewness among attributes of the numeric type.
89.11
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.02
First quartile of kurtosis among attributes of the numeric type.
2.13
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.9
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.84
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.75
Mean of means among attributes of the numeric type.
-0.25
First quartile of skewness among attributes of the numeric type.
-0.29
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.35
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task