Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3522

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3522

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3522 (TID: 12949), and it has 389 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric255 unique values
0 missing
molecule_id (row identifier)nominal389 unique values
0 missing
NaaNHnumeric2 unique values
0 missing
SaaNHnumeric46 unique values
0 missing
CATS2D_04_DDnumeric2 unique values
0 missing
SssssCnumeric185 unique values
0 missing
CATS2D_03_DAnumeric3 unique values
0 missing
SpDiam_AEA.ed.numeric150 unique values
0 missing
nOHtnumeric2 unique values
0 missing
C.028numeric3 unique values
0 missing
SpMin1_Bh.e.numeric95 unique values
0 missing
Eig02_EA.bo.numeric195 unique values
0 missing
SM12_AEA.ri.numeric195 unique values
0 missing
SaaNnumeric225 unique values
0 missing
SpMax1_Bh.v.numeric117 unique values
0 missing
MAXDNnumeric289 unique values
0 missing
ATSC4snumeric351 unique values
0 missing
MATS8inumeric234 unique values
0 missing
SsOHnumeric142 unique values
0 missing
Eig01_AEA.dm.numeric183 unique values
0 missing
SpDiam_AEA.dm.numeric184 unique values
0 missing
SpMax_AEA.dm.numeric183 unique values
0 missing
P_VSA_p_2numeric97 unique values
0 missing
SM04_EA.ed.numeric205 unique values
0 missing
SM08_AEA.ed.numeric204 unique values
0 missing
GATS4snumeric292 unique values
0 missing
IC1numeric267 unique values
0 missing
SpMAD_EA.ed.numeric202 unique values
0 missing
SM07_AEA.ed.numeric197 unique values
0 missing
TPSA.NO.numeric102 unique values
0 missing
GATS4enumeric292 unique values
0 missing
SM08_EAnumeric206 unique values
0 missing
SM09_EAnumeric212 unique values
0 missing
SpMAD_AEA.ed.numeric132 unique values
0 missing
SM06_AEA.ed.numeric205 unique values
0 missing
JGI3numeric57 unique values
0 missing
SM07_EAnumeric199 unique values
0 missing
MATS5enumeric189 unique values
0 missing
SM03_EA.ed.numeric151 unique values
0 missing
SM10_EA.ri.numeric292 unique values
0 missing
SpMin4_Bh.p.numeric187 unique values
0 missing
SM05_EAnumeric95 unique values
0 missing
Eig01_AEA.bo.numeric177 unique values
0 missing
SpMax_AEA.bo.numeric177 unique values
0 missing
TPSA.Tot.numeric108 unique values
0 missing
SM06_EAnumeric205 unique values
0 missing
Eta_sh_xnumeric56 unique values
0 missing
SM05_AEA.ed.numeric200 unique values
0 missing
SM06_EA.ri.numeric289 unique values
0 missing
ATSC5enumeric242 unique values
0 missing
SM08_EA.ri.numeric279 unique values
0 missing
SM11_EA.ri.numeric291 unique values
0 missing
SM12_EA.ri.numeric275 unique values
0 missing
SM13_EA.ri.numeric274 unique values
0 missing
SM14_EA.ri.numeric280 unique values
0 missing
SM09_EA.ri.numeric287 unique values
0 missing
Eig01_EA.ri.numeric170 unique values
0 missing
SM15_EA.ri.numeric276 unique values
0 missing
SpDiam_EA.ri.numeric171 unique values
0 missing
SpMax_EA.ri.numeric170 unique values
0 missing
SM14_EAnumeric210 unique values
0 missing
SM15_EAnumeric209 unique values
0 missing
MATS4enumeric183 unique values
0 missing
P_VSA_v_2numeric117 unique values
0 missing
SaasCnumeric280 unique values
0 missing
nCsnumeric13 unique values
0 missing
SM12_EAnumeric209 unique values
0 missing

62 properties

389
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.17
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.61
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.35
Mean skewness among attributes of the numeric type.
5.03
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.56
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.14
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.4
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.51
Second quartile (Median) of standard deviation of attributes of the numeric type.
147.92
Maximum kurtosis among attributes of the numeric type.
-0.12
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
69.63
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.34
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
12.68
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.7
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
9.77
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.41
Third quartile of skewness among attributes of the numeric type.
30.4
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.29
First quartile of kurtosis among attributes of the numeric type.
1.05
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.61
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.18
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
9.98
Mean of means among attributes of the numeric type.
-0.24
First quartile of skewness among attributes of the numeric type.
0.25
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.31
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task