Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL227

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL227

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL227 (TID: 115), and it has 974 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric499 unique values
0 missing
molecule_id (row identifier)nominal974 unique values
0 missing
CATS2D_04_LLnumeric25 unique values
0 missing
cRo5numeric2 unique values
0 missing
H.046numeric23 unique values
0 missing
CMC.80numeric2 unique values
0 missing
CATS2D_05_DLnumeric20 unique values
0 missing
Infective.80numeric2 unique values
0 missing
Neoplastic.80numeric2 unique values
0 missing
CATS2D_09_AAnumeric8 unique values
0 missing
Hypertens.80numeric2 unique values
0 missing
CATS2D_01_LLnumeric34 unique values
0 missing
NRSnumeric8 unique values
0 missing
DLS_07numeric3 unique values
0 missing
nImidazolesnumeric3 unique values
0 missing
Inflammat.80numeric2 unique values
0 missing
CATS2D_02_LLnumeric36 unique values
0 missing
Eig02_EA.ri.numeric450 unique values
0 missing
LLS_02numeric6 unique values
0 missing
C.025numeric9 unique values
0 missing
CATS2D_05_LLnumeric34 unique values
0 missing
LLS_01numeric7 unique values
0 missing
Eig06_EA.bo.numeric570 unique values
0 missing
DLS_01numeric4 unique values
0 missing
CATS2D_03_LLnumeric31 unique values
0 missing
NaasCnumeric14 unique values
0 missing
P_VSA_LogP_5numeric636 unique values
0 missing
CATS2D_04_ALnumeric30 unique values
0 missing
NaaNHnumeric3 unique values
0 missing
C.031numeric3 unique values
0 missing
nCsp2numeric37 unique values
0 missing
C.043numeric3 unique values
0 missing
nRCOnumeric3 unique values
0 missing
nCconjnumeric12 unique values
0 missing
C.019numeric4 unique values
0 missing
Eig02_AEA.ri.numeric447 unique values
0 missing
C.038numeric3 unique values
0 missing
SpMin3_Bh.p.numeric368 unique values
0 missing
S.107numeric3 unique values
0 missing
DLS_consnumeric67 unique values
0 missing
CATS2D_06_ALnumeric33 unique values
0 missing
Eig02_EA.ed.numeric533 unique values
0 missing
SM11_AEA.dm.numeric533 unique values
0 missing
nCICnumeric8 unique values
0 missing
Eig01_EA.dm.numeric155 unique values
0 missing
SpMax_EA.dm.numeric155 unique values
0 missing
DLS_06numeric6 unique values
0 missing
MATS3mnumeric346 unique values
0 missing
piPC07numeric695 unique values
0 missing
NaasNnumeric3 unique values
0 missing
nROCONnumeric3 unique values
0 missing
Wapnumeric788 unique values
0 missing
CATS2D_05_ALnumeric30 unique values
0 missing
SpMax5_Bh.e.numeric522 unique values
0 missing
piIDnumeric779 unique values
0 missing
SpMax5_Bh.i.numeric517 unique values
0 missing
SpMax7_Bh.p.numeric540 unique values
0 missing
SAdonnumeric72 unique values
0 missing
SpMax3_Bh.i.numeric408 unique values
0 missing
SpMax5_Bh.v.numeric539 unique values
0 missing
Eig05_EA.bo.numeric583 unique values
0 missing
SM15_AEA.ri.numeric583 unique values
0 missing
Eig15_EA.ri.numeric594 unique values
0 missing
nHDonnumeric13 unique values
0 missing
SpMax1_Bh.i.numeric252 unique values
0 missing
SpMin3_Bh.v.numeric382 unique values
0 missing
SpMax7_Bh.v.numeric550 unique values
0 missing
Xindexnumeric288 unique values
0 missing
H.050numeric13 unique values
0 missing
nRSRnumeric3 unique values
0 missing
SpMin6_Bh.e.numeric491 unique values
0 missing
SpMin5_Bh.s.numeric488 unique values
0 missing

62 properties

974
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.07
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.21
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.52
Mean skewness among attributes of the numeric type.
2.07
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1011.95
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.27
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.5
Second quartile (Median) of standard deviation of attributes of the numeric type.
20.19
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
62966.93
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.88
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
5.98
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.54
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.27
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.16
Third quartile of skewness among attributes of the numeric type.
71661.47
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.81
First quartile of kurtosis among attributes of the numeric type.
2.33
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.46
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.36
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
891.39
Mean of means among attributes of the numeric type.
-0.39
First quartile of skewness among attributes of the numeric type.
0.17
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.33
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task