Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3505

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3505

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3505 (TID: 11668), and it has 40 rows and 125 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

127 features

pXC50 (target)numeric29 unique values
0 missing
molecule_id (row identifier)nominal40 unique values
0 missing
CIC5numeric28 unique values
0 missing
MAXDPnumeric38 unique values
0 missing
nCsp3numeric11 unique values
0 missing
ATS6mnumeric38 unique values
0 missing
ATSC4snumeric38 unique values
0 missing
Chi1_EA.dm.numeric34 unique values
0 missing
Eig06_AEA.dm.numeric37 unique values
0 missing
Eig08_AEA.ri.numeric33 unique values
0 missing
Eig08_EAnumeric27 unique values
0 missing
Eig08_EA.ri.numeric35 unique values
0 missing
GGI9numeric14 unique values
0 missing
MWnumeric36 unique values
0 missing
SIC4numeric25 unique values
0 missing
SIC5numeric26 unique values
0 missing
SM02_AEA.dm.numeric27 unique values
0 missing
SpMax7_Bh.m.numeric34 unique values
0 missing
X2solnumeric35 unique values
0 missing
ALOGPnumeric37 unique values
0 missing
ALOGP2numeric37 unique values
0 missing
ATS8mnumeric34 unique values
0 missing
BLTA96numeric34 unique values
0 missing
BLTD48numeric35 unique values
0 missing
BLTF96numeric35 unique values
0 missing
C.numeric21 unique values
0 missing
C.026numeric6 unique values
0 missing
CATS2D_02_DDnumeric2 unique values
0 missing
CATS2D_04_DLnumeric9 unique values
0 missing
CATS2D_08_LLnumeric8 unique values
0 missing
CIC3numeric29 unique values
0 missing
CIC4numeric28 unique values
0 missing
Eta_beta_Anumeric31 unique values
0 missing
Eta_betaP_Anumeric27 unique values
0 missing
Eta_L_Anumeric33 unique values
0 missing
GATS4inumeric37 unique values
0 missing
IC3numeric30 unique values
0 missing
IC4numeric30 unique values
0 missing
MLOGPnumeric35 unique values
0 missing
Mvnumeric31 unique values
0 missing
nCb.numeric6 unique values
0 missing
nCsp2numeric13 unique values
0 missing
NssCH2numeric8 unique values
0 missing
PDInumeric35 unique values
0 missing
P_VSA_p_3numeric37 unique values
0 missing
P_VSA_v_3numeric37 unique values
0 missing
SIC3numeric27 unique values
0 missing
SsClnumeric10 unique values
0 missing
ATS2mnumeric35 unique values
0 missing
IC5numeric30 unique values
0 missing
DLS_consnumeric20 unique values
0 missing
ARRnumeric18 unique values
0 missing
ZM1Madnumeric35 unique values
0 missing
ATS1mnumeric36 unique values
0 missing
ATS4mnumeric38 unique values
0 missing
ATS8vnumeric34 unique values
0 missing
CATS2D_06_LLnumeric6 unique values
0 missing
Eig04_EA.bo.numeric32 unique values
0 missing
Eig07_AEA.bo.numeric30 unique values
0 missing
Eig07_EA.bo.numeric32 unique values
0 missing
Eig07_EA.ed.numeric29 unique values
0 missing
Eig13_AEA.dm.numeric29 unique values
0 missing
Eta_alphanumeric30 unique values
0 missing
Eta_FL_Anumeric31 unique values
0 missing
GGI10numeric12 unique values
0 missing
GGI3numeric27 unique values
0 missing
MWC02numeric20 unique values
0 missing
piPC01numeric25 unique values
0 missing
RDSQnumeric30 unique values
0 missing
SCBOnumeric25 unique values
0 missing
SM02_AEA.bo.numeric29 unique values
0 missing
SM02_AEA.ri.numeric29 unique values
0 missing
SM03_AEA.bo.numeric29 unique values
0 missing
SM14_AEA.ri.numeric32 unique values
0 missing
SpAD_AEA.ri.numeric37 unique values
0 missing
SpAD_EAnumeric30 unique values
0 missing
SpAD_EA.bo.numeric32 unique values
0 missing
SpMax6_Bh.m.numeric38 unique values
0 missing
SpMax7_Bh.p.numeric37 unique values
0 missing
SpMax8_Bh.m.numeric34 unique values
0 missing
X3solnumeric35 unique values
0 missing
X4numeric30 unique values
0 missing
X4solnumeric35 unique values
0 missing
X5solnumeric35 unique values
0 missing
XMODnumeric36 unique values
0 missing
ZM1numeric20 unique values
0 missing
ZM2Madnumeric37 unique values
0 missing
GATS5snumeric37 unique values
0 missing
BIC5numeric27 unique values
0 missing
C.024numeric8 unique values
0 missing
CATS2D_09_LLnumeric5 unique values
0 missing
D.Dtr06numeric20 unique values
0 missing
Eig02_EA.bo.numeric30 unique values
0 missing
Eig06_AEA.ed.numeric30 unique values
0 missing
Eig06_AEA.ri.numeric37 unique values
0 missing
Hynumeric28 unique values
0 missing
MATS4enumeric35 unique values
0 missing
MATS4inumeric37 unique values
0 missing
MATS4snumeric36 unique values
0 missing
Minumeric29 unique values
0 missing
Mpnumeric33 unique values
0 missing
NaaCHnumeric8 unique values
0 missing
nBnznumeric4 unique values
0 missing
nCarnumeric9 unique values
0 missing
nCbHnumeric7 unique values
0 missing
NsssCHnumeric4 unique values
0 missing
PCRnumeric30 unique values
0 missing
P_VSA_e_2numeric37 unique values
0 missing
P_VSA_i_2numeric37 unique values
0 missing
P_VSA_MR_2numeric17 unique values
0 missing
P_VSA_MR_6numeric22 unique values
0 missing
SaaCHnumeric15 unique values
0 missing
SAdonnumeric10 unique values
0 missing
SM12_AEA.ri.numeric30 unique values
0 missing
SpMax2_Bh.m.numeric38 unique values
0 missing
SpMin2_Bh.e.numeric36 unique values
0 missing
SpMin2_Bh.i.numeric33 unique values
0 missing
AECCnumeric28 unique values
0 missing
DECCnumeric29 unique values
0 missing
Eig10_AEA.bo.numeric29 unique values
0 missing
Eig10_AEA.ri.numeric36 unique values
0 missing
HVcpxnumeric30 unique values
0 missing
ICRnumeric29 unique values
0 missing
JGI9numeric8 unique values
0 missing
SNarnumeric21 unique values
0 missing
SpMax2_Bh.e.numeric35 unique values
0 missing
SpMax2_Bh.i.numeric37 unique values
0 missing

62 properties

40
Number of instances (rows) of the dataset.
127
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
126
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
3.18
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.09
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.44
Mean skewness among attributes of the numeric type.
2.06
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.19
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.31
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.47
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.83
Second quartile (Median) of standard deviation of attributes of the numeric type.
10.32
Maximum kurtosis among attributes of the numeric type.
-1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
268.64
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.13
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.21
Percentage of numeric attributes.
4.51
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.93
Minimum skewness among attributes of the numeric type.
0.79
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.75
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.22
Third quartile of skewness among attributes of the numeric type.
74.69
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.61
First quartile of kurtosis among attributes of the numeric type.
2.72
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.87
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.76
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
14.35
Mean of means among attributes of the numeric type.
-0.25
First quartile of skewness among attributes of the numeric type.
-0.46
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.3
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task