Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1889

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1889

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1889 (TID: 134), and it has 878 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric593 unique values
0 missing
molecule_id (row identifier)nominal878 unique values
0 missing
SM06_EA.ri.numeric614 unique values
0 missing
MAXDPnumeric693 unique values
0 missing
GGI10numeric376 unique values
0 missing
Eig04_AEA.ed.numeric378 unique values
0 missing
SM07_EA.ri.numeric593 unique values
0 missing
SM05_EA.ri.numeric548 unique values
0 missing
Eig05_AEA.ri.numeric484 unique values
0 missing
Eig03_EA.dm.numeric103 unique values
0 missing
SpMin6_Bh.e.numeric383 unique values
0 missing
Eig06_AEA.dm.numeric449 unique values
0 missing
SM08_EA.ri.numeric611 unique values
0 missing
SpMin6_Bh.i.numeric395 unique values
0 missing
S2Knumeric644 unique values
0 missing
Eig04_AEA.dm.numeric404 unique values
0 missing
Eig12_EA.dm.numeric28 unique values
0 missing
Eig09_EA.dm.numeric50 unique values
0 missing
SpMin7_Bh.p.numeric398 unique values
0 missing
C.008numeric10 unique values
0 missing
SpAD_EA.dm.numeric335 unique values
0 missing
Eig12_AEA.dm.numeric368 unique values
0 missing
Eig05_EA.dm.numeric104 unique values
0 missing
SIC1numeric237 unique values
0 missing
GGI7numeric468 unique values
0 missing
DLS_02numeric7 unique values
0 missing
SM02_EA.dm.numeric304 unique values
0 missing
Eig05_EA.ed.numeric522 unique values
0 missing
SM14_AEA.dm.numeric522 unique values
0 missing
Eig04_EA.ed.numeric470 unique values
0 missing
SM13_AEA.dm.numeric470 unique values
0 missing
Eig05_AEA.dm.numeric426 unique values
0 missing
Eig11_EA.dm.numeric31 unique values
0 missing
PHInumeric670 unique values
0 missing
Psi_i_snumeric597 unique values
0 missing
Eig09_AEA.dm.numeric484 unique values
0 missing
S3Knumeric700 unique values
0 missing
ATS7mnumeric668 unique values
0 missing
SpMax5_Bh.s.numeric350 unique values
0 missing
SpMax7_Bh.s.numeric375 unique values
0 missing
Eig08_AEA.dm.numeric473 unique values
0 missing
Eig07_EA.dm.numeric73 unique values
0 missing
ATSC5snumeric828 unique values
0 missing
Eig05_AEA.ed.numeric433 unique values
0 missing
BIC1numeric212 unique values
0 missing
Eig13_EA.dm.numeric29 unique values
0 missing
SpMax5_Bh.e.numeric392 unique values
0 missing
TIEnumeric831 unique values
0 missing
X4solnumeric689 unique values
0 missing
CATS2D_08_DLnumeric31 unique values
0 missing
Eig10_EA.dm.numeric40 unique values
0 missing
MWC08numeric541 unique values
0 missing
Ramnumeric38 unique values
0 missing
Eig07_AEA.dm.numeric484 unique values
0 missing
CIC3numeric543 unique values
0 missing
ATSC8snumeric818 unique values
0 missing
CATS2D_05_AAnumeric14 unique values
0 missing
Eig08_EA.dm.numeric63 unique values
0 missing
NsssCHnumeric13 unique values
0 missing
MWC07numeric519 unique values
0 missing
P_VSA_m_2numeric714 unique values
0 missing
DELSnumeric831 unique values
0 missing
ATSC2snumeric802 unique values
0 missing
SM03_EA.dm.numeric120 unique values
0 missing
SdssCnumeric616 unique values
0 missing
MWC09numeric542 unique values
0 missing
CATS2D_08_DAnumeric19 unique values
0 missing
SpMax6_Bh.s.numeric380 unique values
0 missing
H.052numeric23 unique values
0 missing
CIC2numeric604 unique values
0 missing
SM09_EA.ri.numeric611 unique values
0 missing

62 properties

878
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
10.62
Maximum kurtosis among attributes of the numeric type.
-1.96
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
1.86
Third quartile of kurtosis among attributes of the numeric type.
246.9
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
9.2
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.83
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
1.6
Third quartile of skewness among attributes of the numeric type.
3.09
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.49
Third quartile of standard deviation of attributes of the numeric type.
266.75
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.06
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.41
First quartile of means among attributes of the numeric type.
1.04
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
19.69
Mean of means among attributes of the numeric type.
0
First quartile of skewness among attributes of the numeric type.
-0.03
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.42
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.08
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.43
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.72
Mean skewness among attributes of the numeric type.
3.93
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
15.13
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.47
Second quartile (Median) of skewness among attributes of the numeric type.
0.72
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.38
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task