Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL402

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL402

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL402 (TID: 24), and it has 234 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric187 unique values
0 missing
molecule_id (row identifier)nominal234 unique values
0 missing
C.018numeric2 unique values
0 missing
C.034numeric4 unique values
0 missing
N.073numeric3 unique values
0 missing
nPyrrolesnumeric2 unique values
0 missing
NaasNnumeric3 unique values
0 missing
MATS5mnumeric144 unique values
0 missing
SpMAD_EA.dm.numeric120 unique values
0 missing
H.048numeric2 unique values
0 missing
SsFnumeric145 unique values
0 missing
SpMax2_Bh.s.numeric31 unique values
0 missing
NaasCnumeric13 unique values
0 missing
X3Anumeric45 unique values
0 missing
SpMAD_AEA.ri.numeric76 unique values
0 missing
X4Avnumeric49 unique values
0 missing
SpMin4_Bh.i.numeric126 unique values
0 missing
MATS4snumeric128 unique values
0 missing
nArXnumeric4 unique values
0 missing
CATS2D_03_DNnumeric3 unique values
0 missing
SpMAD_EAnumeric78 unique values
0 missing
Eig01_EA.bo.numeric132 unique values
0 missing
SM11_AEA.ri.numeric132 unique values
0 missing
SpDiam_EA.bo.numeric133 unique values
0 missing
SpMax_EA.bo.numeric132 unique values
0 missing
CATS2D_02_ALnumeric14 unique values
0 missing
SpMin4_Bh.e.numeric118 unique values
0 missing
P_VSA_LogP_5numeric100 unique values
0 missing
F.084numeric4 unique values
0 missing
nXnumeric5 unique values
0 missing
SaasCnumeric185 unique values
0 missing
SpMAD_EA.bo.numeric132 unique values
0 missing
SM08_EA.bo.numeric178 unique values
0 missing
MATS4pnumeric152 unique values
0 missing
X3Avnumeric62 unique values
0 missing
SpMAD_AEA.bo.numeric86 unique values
0 missing
nFnumeric5 unique values
0 missing
NsFnumeric5 unique values
0 missing
SpMax1_Bh.s.numeric19 unique values
0 missing
SM09_EA.bo.numeric175 unique values
0 missing
piPC10numeric182 unique values
0 missing
piPC08numeric186 unique values
0 missing
GATS4pnumeric160 unique values
0 missing
SM13_EA.bo.numeric176 unique values
0 missing
SM14_EA.bo.numeric179 unique values
0 missing
SM15_EA.bo.numeric181 unique values
0 missing
CATS2D_04_DDnumeric6 unique values
0 missing
Eig02_AEA.dm.numeric100 unique values
0 missing
SpMin5_Bh.m.numeric125 unique values
0 missing
piPC07numeric185 unique values
0 missing
piPC09numeric180 unique values
0 missing
SaasNnumeric101 unique values
0 missing
nCarnumeric18 unique values
0 missing
SM07_EA.bo.numeric177 unique values
0 missing
GATS2vnumeric151 unique values
0 missing
piPC06numeric177 unique values
0 missing
CATS2D_05_DLnumeric15 unique values
0 missing
GATS2pnumeric152 unique values
0 missing
X5Avnumeric38 unique values
0 missing
SpMin4_Bh.m.numeric114 unique values
0 missing
MATS5enumeric138 unique values
0 missing
SpMax1_Bh.i.numeric122 unique values
0 missing
CATS2D_09_NLnumeric7 unique values
0 missing
CATS2D_05_NLnumeric3 unique values
0 missing
nROHnumeric6 unique values
0 missing
CATS2D_08_ANnumeric3 unique values
0 missing
X5Anumeric32 unique values
0 missing

62 properties

234
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.29
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.99
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.54
Mean skewness among attributes of the numeric type.
1.65
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.24
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.42
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.77
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.5
Second quartile (Median) of standard deviation of attributes of the numeric type.
123.38
Maximum kurtosis among attributes of the numeric type.
-0.09
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
27.62
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
7.15
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
6.5
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-9.52
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.17
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.6
Third quartile of skewness among attributes of the numeric type.
17.22
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.33
First quartile of kurtosis among attributes of the numeric type.
1.06
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.63
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
7.29
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
4.3
Mean of means among attributes of the numeric type.
-1.59
First quartile of skewness among attributes of the numeric type.
0.02
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.12
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task