Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1937

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1937

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1937 (TID: 11206), and it has 435 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric288 unique values
0 missing
molecule_id (row identifier)nominal435 unique values
0 missing
MATS5mnumeric264 unique values
0 missing
SpMaxA_EA.dm.numeric102 unique values
0 missing
P_VSA_LogP_3numeric130 unique values
0 missing
SsOHnumeric246 unique values
0 missing
MATS5vnumeric232 unique values
0 missing
nRSRnumeric3 unique values
0 missing
nRCNOnumeric2 unique values
0 missing
CATS2D_06_DLnumeric15 unique values
0 missing
GATS5pnumeric254 unique values
0 missing
SpDiam_EA.ed.numeric264 unique values
0 missing
MATS3snumeric233 unique values
0 missing
CATS2D_05_DLnumeric14 unique values
0 missing
Eig01_AEA.ed.numeric205 unique values
0 missing
Eig01_EA.ed.numeric242 unique values
0 missing
SM10_AEA.dm.numeric242 unique values
0 missing
SpMax_AEA.ed.numeric205 unique values
0 missing
SpMax_EA.ed.numeric242 unique values
0 missing
Eig05_AEA.bo.numeric273 unique values
0 missing
X4Anumeric54 unique values
0 missing
P_VSA_v_2numeric202 unique values
0 missing
GATS7vnumeric249 unique values
0 missing
NssSnumeric3 unique values
0 missing
SssSnumeric42 unique values
0 missing
SpDiam_EA.dm.numeric78 unique values
0 missing
SpMax6_Bh.v.numeric287 unique values
0 missing
Eig03_AEA.dm.numeric221 unique values
0 missing
Eig05_AEA.ed.numeric258 unique values
0 missing
C.numeric130 unique values
0 missing
P_VSA_p_2numeric192 unique values
0 missing
TIC1numeric372 unique values
0 missing
SpMin7_Bh.v.numeric259 unique values
0 missing
ATSC5vnumeric413 unique values
0 missing
Eig01_AEA.dm.numeric98 unique values
0 missing
SpMax_AEA.dm.numeric98 unique values
0 missing
Eig04_EAnumeric255 unique values
0 missing
SM12_AEA.bo.numeric255 unique values
0 missing
Eig04_EA.ed.numeric290 unique values
0 missing
SM13_AEA.dm.numeric290 unique values
0 missing
P_VSA_i_1numeric14 unique values
0 missing
SpMin8_Bh.p.numeric279 unique values
0 missing
C.032numeric2 unique values
0 missing
P_VSA_i_2numeric364 unique values
0 missing
Eig04_AEA.ed.numeric266 unique values
0 missing
ATSC8enumeric335 unique values
0 missing
CATS2D_01_DDnumeric3 unique values
0 missing
MATS4enumeric228 unique values
0 missing
Eig04_AEA.dm.numeric251 unique values
0 missing
SM06_EA.bo.numeric328 unique values
0 missing
SM12_EA.dm.numeric144 unique values
0 missing
IC3numeric333 unique values
0 missing
ATS6snumeric377 unique values
0 missing
Eig04_EA.ri.numeric295 unique values
0 missing
SpMin8_Bh.v.numeric261 unique values
0 missing
MATS1mnumeric125 unique values
0 missing
SAaccnumeric197 unique values
0 missing
SM08_EA.bo.numeric338 unique values
0 missing
SpDiam_AEA.ed.numeric266 unique values
0 missing
Eig01_EA.dm.numeric62 unique values
0 missing
SM14_EA.dm.numeric132 unique values
0 missing
SpMax_EA.dm.numeric62 unique values
0 missing
MATS5pnumeric217 unique values
0 missing
Eig05_AEA.dm.numeric282 unique values
0 missing
MATS7vnumeric232 unique values
0 missing
GGI8numeric209 unique values
0 missing
SM04_EA.dm.numeric188 unique values
0 missing
SM06_EA.dm.numeric183 unique values
0 missing
SM08_EA.dm.numeric171 unique values
0 missing
SM10_EA.dm.numeric154 unique values
0 missing

62 properties

435
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.16
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.96
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.21
Mean skewness among attributes of the numeric type.
3.88
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
5.26
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.29
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.85
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.54
Second quartile (Median) of standard deviation of attributes of the numeric type.
46.11
Maximum kurtosis among attributes of the numeric type.
-0.09
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
179.77
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
8.68
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
7.59
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.02
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.72
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.23
Third quartile of skewness among attributes of the numeric type.
61.31
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.24
First quartile of kurtosis among attributes of the numeric type.
1.91
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.72
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
5.55
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.3
Mean of means among attributes of the numeric type.
-1.25
First quartile of skewness among attributes of the numeric type.
0.17
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.27
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task