Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2885

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2885

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2885 (TID: 10139), and it has 105 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric89 unique values
0 missing
molecule_id (row identifier)nominal105 unique values
0 missing
SpMax2_Bh.p.numeric97 unique values
0 missing
nRCOORnumeric4 unique values
0 missing
SpMax3_Bh.s.numeric63 unique values
0 missing
SpMax4_Bh.m.numeric90 unique values
0 missing
SssCH2numeric48 unique values
0 missing
GATS1vnumeric87 unique values
0 missing
P_VSA_s_3numeric85 unique values
0 missing
SpMin3_Bh.s.numeric86 unique values
0 missing
C.008numeric5 unique values
0 missing
nCrsnumeric5 unique values
0 missing
NsssCHnumeric5 unique values
0 missing
SpMin2_Bh.i.numeric90 unique values
0 missing
SsssCHnumeric13 unique values
0 missing
SpDiam_AEA.bo.numeric85 unique values
0 missing
CATS2D_04_AAnumeric6 unique values
0 missing
AACnumeric86 unique values
0 missing
AECCnumeric84 unique values
0 missing
ALOGPnumeric92 unique values
0 missing
ALOGP2numeric91 unique values
0 missing
AMRnumeric94 unique values
0 missing
AMWnumeric89 unique values
0 missing
ARRnumeric41 unique values
0 missing
ATS1enumeric92 unique values
0 missing
ATS1inumeric92 unique values
0 missing
ATS1mnumeric91 unique values
0 missing
ATS1pnumeric90 unique values
0 missing
ATS1snumeric94 unique values
0 missing
ATS1vnumeric90 unique values
0 missing
ATS2enumeric91 unique values
0 missing
ATS2inumeric91 unique values
0 missing
ATS2mnumeric93 unique values
0 missing
ATS2pnumeric90 unique values
0 missing
ATS2snumeric95 unique values
0 missing
ATS2vnumeric91 unique values
0 missing
ATS3enumeric91 unique values
0 missing
ATS3inumeric92 unique values
0 missing
ATS3mnumeric96 unique values
0 missing
ATS3pnumeric94 unique values
0 missing
ATS3snumeric98 unique values
0 missing
ATS3vnumeric95 unique values
0 missing
ATS4enumeric95 unique values
0 missing
ATS4inumeric95 unique values
0 missing
ATS4mnumeric95 unique values
0 missing
ATS4pnumeric98 unique values
0 missing
ATS4snumeric98 unique values
0 missing
ATS4vnumeric99 unique values
0 missing
ATS5enumeric99 unique values
0 missing
ATS5inumeric96 unique values
0 missing
ATS5mnumeric98 unique values
0 missing
ATS5pnumeric99 unique values
0 missing
ATS5snumeric99 unique values
0 missing
ATS5vnumeric99 unique values
0 missing
ATS6enumeric98 unique values
0 missing
ATS6inumeric96 unique values
0 missing
ATS6mnumeric95 unique values
0 missing
ATS6pnumeric96 unique values
0 missing
ATS6snumeric95 unique values
0 missing
ATS6vnumeric98 unique values
0 missing
ATS7enumeric92 unique values
0 missing
ATS7inumeric90 unique values
0 missing
ATS7mnumeric92 unique values
0 missing
ATS7pnumeric90 unique values
0 missing
ATS7snumeric93 unique values
0 missing
ATS7vnumeric92 unique values
0 missing
ATS8enumeric83 unique values
0 missing
ATS8inumeric81 unique values
0 missing

62 properties

105
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.65
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.05
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.04
Mean skewness among attributes of the numeric type.
3.4
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.7
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.15
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.35
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.81
Second quartile (Median) of standard deviation of attributes of the numeric type.
9.98
Maximum kurtosis among attributes of the numeric type.
-0.55
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
71.93
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.9
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
4.37
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.99
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.1
Maximum skewness among attributes of the numeric type.
0.22
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.24
Third quartile of skewness among attributes of the numeric type.
33.09
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.5
First quartile of kurtosis among attributes of the numeric type.
1.33
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.74
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.87
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
4.68
Mean of means among attributes of the numeric type.
-0.53
First quartile of skewness among attributes of the numeric type.
0.17
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.51
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task