Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5131

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5131

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5131 (TID: 10445), and it has 277 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric169 unique values
0 missing
molecule_id (row identifier)nominal277 unique values
0 missing
SpMax2_Bh.v.numeric165 unique values
0 missing
SpMax2_Bh.p.numeric171 unique values
0 missing
SpMin2_Bh.m.numeric135 unique values
0 missing
SpMin2_Bh.e.numeric151 unique values
0 missing
AMRnumeric275 unique values
0 missing
SpMin2_Bh.i.numeric141 unique values
0 missing
O.numeric88 unique values
0 missing
SpMax6_Bh.m.numeric238 unique values
0 missing
ATS1pnumeric252 unique values
0 missing
SpMin5_Bh.v.numeric192 unique values
0 missing
X1vnumeric271 unique values
0 missing
X0vnumeric270 unique values
0 missing
nCarnumeric23 unique values
0 missing
VvdwMGnumeric269 unique values
0 missing
Vxnumeric269 unique values
0 missing
SpMax8_Bh.m.numeric226 unique values
0 missing
SpMax5_Bh.m.numeric222 unique values
0 missing
Eta_alphanumeric225 unique values
0 missing
ATSC8mnumeric274 unique values
0 missing
SpMax4_Bh.e.numeric207 unique values
0 missing
ATS2pnumeric245 unique values
0 missing
nABnumeric18 unique values
0 missing
Spnumeric266 unique values
0 missing
ATS8pnumeric255 unique values
0 missing
SpMin4_Bh.i.numeric189 unique values
0 missing
SpMin5_Bh.e.numeric212 unique values
0 missing
Yindexnumeric219 unique values
0 missing
SpMin4_Bh.v.numeric182 unique values
0 missing
SpMax5_Bh.p.numeric216 unique values
0 missing
SpMax5_Bh.v.numeric225 unique values
0 missing
SpMin4_Bh.e.numeric201 unique values
0 missing
SpMax4_Bh.p.numeric195 unique values
0 missing
SpMax4_Bh.v.numeric211 unique values
0 missing
SpMax4_Bh.i.numeric186 unique values
0 missing
piPC03numeric204 unique values
0 missing
SpMaxA_EA.ri.numeric115 unique values
0 missing
SpMaxA_AEA.ri.numeric140 unique values
0 missing
SpMin5_Bh.i.numeric206 unique values
0 missing
ON0Vnumeric238 unique values
0 missing
SpMax5_Bh.i.numeric211 unique values
0 missing
TIC3numeric273 unique values
0 missing
SpMin3_Bh.e.numeric166 unique values
0 missing
MWnumeric269 unique values
0 missing
SpMin4_Bh.p.numeric189 unique values
0 missing
X1solnumeric258 unique values
0 missing
SpMaxA_AEA.ed.numeric167 unique values
0 missing
ATS1vnumeric247 unique values
0 missing
SAtotnumeric272 unique values
0 missing
SpMax6_Bh.p.numeric206 unique values
0 missing
SpMax2_Bh.e.numeric168 unique values
0 missing
Chi1_EA.ri.numeric272 unique values
0 missing
SNarnumeric184 unique values
0 missing
TIC2numeric274 unique values
0 missing
SpMax5_Bh.e.numeric224 unique values
0 missing
IVDMnumeric219 unique values
0 missing
SpMax4_Bh.m.numeric205 unique values
0 missing
SpMaxA_EAnumeric112 unique values
0 missing
SpMax2_Bh.i.numeric149 unique values
0 missing
SpMaxA_AEA.bo.numeric146 unique values
0 missing
Chi0_EA.ri.numeric270 unique values
0 missing
Psi_i_0numeric272 unique values
0 missing
Psi_e_Anumeric228 unique values
0 missing
Psi_i_Anumeric228 unique values
0 missing
TIC1numeric274 unique values
0 missing
Eig11_AEA.bo.numeric195 unique values
0 missing
Eig11_EA.bo.numeric198 unique values
0 missing
XMODnumeric271 unique values
0 missing

62 properties

277
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.25
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.47
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.16
Mean skewness among attributes of the numeric type.
3.7
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
18.57
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.3
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.77
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.33
Second quartile (Median) of standard deviation of attributes of the numeric type.
6.22
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
628.01
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.13
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
16.2
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.03
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.68
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.55
Third quartile of skewness among attributes of the numeric type.
236.79
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.39
First quartile of kurtosis among attributes of the numeric type.
6.4
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.9
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.7
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
49.68
Mean of means among attributes of the numeric type.
-0.89
First quartile of skewness among attributes of the numeric type.
0.47
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task