Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3437

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3437

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3437 (TID: 20143), and it has 138 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric103 unique values
0 missing
molecule_id (row identifier)nominal138 unique values
0 missing
CATS2D_01_APnumeric2 unique values
0 missing
CATS2D_01_DAnumeric2 unique values
0 missing
NsssNnumeric2 unique values
0 missing
SsssNnumeric54 unique values
0 missing
N.068numeric2 unique values
0 missing
P_VSA_MR_5numeric73 unique values
0 missing
LOCnumeric69 unique values
0 missing
nN.Nnumeric2 unique values
0 missing
P_VSA_LogP_2numeric48 unique values
0 missing
GATS2inumeric102 unique values
0 missing
GATS3vnumeric102 unique values
0 missing
MATS1enumeric90 unique values
0 missing
GATS2vnumeric96 unique values
0 missing
ATSC1enumeric55 unique values
0 missing
P_VSA_LogP_1numeric24 unique values
0 missing
GATS3pnumeric108 unique values
0 missing
SsCH3numeric88 unique values
0 missing
ATSC2enumeric89 unique values
0 missing
NsCH3numeric7 unique values
0 missing
GATS3snumeric127 unique values
0 missing
MATS2pnumeric102 unique values
0 missing
C.005numeric6 unique values
0 missing
H.047numeric18 unique values
0 missing
GATS2pnumeric103 unique values
0 missing
PDInumeric81 unique values
0 missing
N.069numeric2 unique values
0 missing
GATS3inumeric105 unique values
0 missing
ATSC1snumeric119 unique values
0 missing
JGI6numeric23 unique values
0 missing
GNarnumeric49 unique values
0 missing
HNarnumeric43 unique values
0 missing
X0Anumeric41 unique values
0 missing
CATS2D_02_DLnumeric7 unique values
0 missing
BACnumeric37 unique values
0 missing
MATS2inumeric101 unique values
0 missing
MATS1vnumeric77 unique values
0 missing
P_VSA_e_3numeric20 unique values
0 missing
P_VSA_MR_6numeric66 unique values
0 missing
SaasCnumeric125 unique values
0 missing
ATSC3enumeric101 unique values
0 missing
SssNHnumeric48 unique values
0 missing
Eta_Bnumeric52 unique values
0 missing
IVDEnumeric54 unique values
0 missing
ATSC6vnumeric129 unique values
0 missing
nNnumeric5 unique values
0 missing
ATS5inumeric122 unique values
0 missing
Eta_sh_pnumeric86 unique values
0 missing
N.075numeric2 unique values
0 missing
NaaNnumeric2 unique values
0 missing
SaaNnumeric39 unique values
0 missing
ATSC5enumeric112 unique values
0 missing
ATS6snumeric125 unique values
0 missing
nRORnumeric2 unique values
0 missing
O.059numeric2 unique values
0 missing
SpMax6_Bh.s.numeric105 unique values
0 missing
IACnumeric87 unique values
0 missing
TIC0numeric87 unique values
0 missing
SPInumeric106 unique values
0 missing
CATS2D_02_PLnumeric3 unique values
0 missing
SAdonnumeric15 unique values
0 missing
JGI7numeric24 unique values
0 missing
Eta_C_Anumeric110 unique values
0 missing

62 properties

138
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.46
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.01
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.68
Mean skewness among attributes of the numeric type.
1.06
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
3.57
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.51
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.47
Second quartile (Median) of standard deviation of attributes of the numeric type.
24.14
Maximum kurtosis among attributes of the numeric type.
-0.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
73.13
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.35
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
4.42
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.62
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.56
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.16
Third quartile of skewness among attributes of the numeric type.
33.13
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.67
First quartile of kurtosis among attributes of the numeric type.
1.91
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.34
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.85
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.33
Mean of means among attributes of the numeric type.
0.04
First quartile of skewness among attributes of the numeric type.
0.22
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.15
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task