Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5627

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5627

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5627 (TID: 101484), and it has 400 rows and 43 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Basic Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median).

45 features

pXC50 (target)numeric80 unique values
0 missing
molecule_id (row identifier)nominal400 unique values
0 missing
AMWnumeric344 unique values
0 missing
C.numeric131 unique values
0 missing
H.numeric145 unique values
0 missing
Menumeric72 unique values
0 missing
Minumeric64 unique values
0 missing
Mpnumeric129 unique values
0 missing
Mvnumeric140 unique values
0 missing
MWnumeric368 unique values
0 missing
N.numeric121 unique values
0 missing
nABnumeric25 unique values
0 missing
nATnumeric69 unique values
0 missing
nBnumeric1 unique values
0 missing
nBMnumeric28 unique values
0 missing
nBOnumeric40 unique values
0 missing
nBRnumeric3 unique values
0 missing
nBTnumeric71 unique values
0 missing
nCnumeric33 unique values
0 missing
nCLnumeric3 unique values
0 missing
nCspnumeric3 unique values
0 missing
nCsp2numeric24 unique values
0 missing
nCsp3numeric17 unique values
0 missing
nDBnumeric6 unique values
0 missing
nFnumeric7 unique values
0 missing
nHnumeric41 unique values
0 missing
nHetnumeric14 unique values
0 missing
nHMnumeric5 unique values
0 missing
nInumeric3 unique values
0 missing
nNnumeric10 unique values
0 missing
nOnumeric8 unique values
0 missing
nPnumeric2 unique values
0 missing
nSnumeric3 unique values
0 missing
nSKnumeric37 unique values
0 missing
nTBnumeric2 unique values
0 missing
nXnumeric7 unique values
0 missing
O.numeric80 unique values
0 missing
RBFnumeric119 unique values
0 missing
RBNnumeric15 unique values
0 missing
SCBOnumeric87 unique values
0 missing
Senumeric365 unique values
0 missing
Sinumeric368 unique values
0 missing
Spnumeric361 unique values
0 missing
Svnumeric370 unique values
0 missing
X.numeric68 unique values
0 missing

62 properties

400
Number of instances (rows) of the dataset.
45
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
44
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.11
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.3
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.62
Mean skewness among attributes of the numeric type.
4.35
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.52
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.5
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.58
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
2.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
400
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
377.94
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.79
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
97.78
Percentage of numeric attributes.
29
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.52
Minimum skewness among attributes of the numeric type.
2.22
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
20
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.57
Third quartile of skewness among attributes of the numeric type.
107.93
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.35
First quartile of kurtosis among attributes of the numeric type.
7.4
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.6
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
15.84
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
21.88
Mean of means among attributes of the numeric type.
0.11
First quartile of skewness among attributes of the numeric type.
0.16
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.4
First quartile of standard deviation of attributes of the numeric type.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task