Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4588

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4588

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4588 (TID: 11110), and it has 969 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric369 unique values
0 missing
molecule_id (row identifier)nominal969 unique values
0 missing
ATSC5snumeric861 unique values
0 missing
ATS1mnumeric548 unique values
0 missing
SpMax3_Bh.e.numeric356 unique values
0 missing
ATS4mnumeric616 unique values
0 missing
ATS2snumeric569 unique values
0 missing
SAtotnumeric788 unique values
0 missing
X1vnumeric785 unique values
0 missing
DELSnumeric855 unique values
0 missing
SpMax4_Bh.v.numeric445 unique values
0 missing
SpMax7_Bh.s.numeric440 unique values
0 missing
VARnumeric259 unique values
0 missing
ATSC5enumeric693 unique values
0 missing
SpMax4_Bh.e.numeric405 unique values
0 missing
X2solnumeric743 unique values
0 missing
Eig13_AEA.ed.numeric428 unique values
0 missing
Psi_e_1numeric770 unique values
0 missing
ZM2Madnumeric830 unique values
0 missing
SM04_EAnumeric296 unique values
0 missing
Psi_i_snumeric579 unique values
0 missing
VvdwMGnumeric705 unique values
0 missing
Vxnumeric705 unique values
0 missing
GGI1numeric27 unique values
0 missing
SpMax4_Bh.p.numeric442 unique values
0 missing
SpMax3_Bh.v.numeric406 unique values
0 missing
SM03_AEA.ed.numeric516 unique values
0 missing
MDDDnumeric731 unique values
0 missing
X0solnumeric570 unique values
0 missing
VvdwZAZnumeric721 unique values
0 missing
SpMax3_Bh.i.numeric351 unique values
0 missing
X5vnumeric773 unique values
0 missing
SpMax4_Bh.i.numeric420 unique values
0 missing
SM02_EA.ed.numeric412 unique values
0 missing
Eig03_AEA.ri.numeric464 unique values
0 missing
Eig03_EA.ri.numeric469 unique values
0 missing
SpMin5_Bh.e.numeric469 unique values
0 missing
Psi_e_0numeric813 unique values
0 missing
SMTIVnumeric810 unique values
0 missing
Eig14_AEA.ed.numeric452 unique values
0 missing
SpMax3_Bh.p.numeric406 unique values
0 missing
ISIZnumeric101 unique values
0 missing
nATnumeric101 unique values
0 missing
IDDMnumeric359 unique values
0 missing
nSKnumeric67 unique values
0 missing
SpMin4_Bh.i.numeric422 unique values
0 missing
SpMax5_Bh.p.numeric487 unique values
0 missing
SpMax8_Bh.m.numeric444 unique values
0 missing
Svnumeric721 unique values
0 missing
SpMax8_Bh.e.numeric427 unique values
0 missing
X1solnumeric684 unique values
0 missing
Eig11_AEA.ed.numeric461 unique values
0 missing
Psi_i_0numeric766 unique values
0 missing
Eig03_EAnumeric427 unique values
0 missing
SM11_AEA.bo.numeric427 unique values
0 missing
Polnumeric97 unique values
0 missing
BIDnumeric149 unique values
0 missing
SM02_AEA.ed.numeric245 unique values
0 missing
X5solnumeric736 unique values
0 missing
SM04_AEA.bo.numeric527 unique values
0 missing
Psi_i_1numeric810 unique values
0 missing
SpAD_EA.ri.numeric851 unique values
0 missing
ZM1Madnumeric796 unique values
0 missing
Eig04_AEA.ed.numeric467 unique values
0 missing
Eig15_AEA.ed.numeric435 unique values
0 missing
Eig12_AEA.ed.numeric439 unique values
0 missing
SpMin4_Bh.e.numeric444 unique values
0 missing
S2Knumeric713 unique values
0 missing
SpMax3_Bh.m.numeric395 unique values
0 missing
ECCnumeric436 unique values
0 missing
ATSC7mnumeric846 unique values
0 missing

62 properties

969
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.07
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
4.97
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.21
Mean skewness among attributes of the numeric type.
6.05
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
530.56
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.06
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.68
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.88
Second quartile (Median) of standard deviation of attributes of the numeric type.
36.36
Maximum kurtosis among attributes of the numeric type.
1.2
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
28483.97
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
10.49
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
35.4
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.63
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.25
Maximum skewness among attributes of the numeric type.
0.18
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.32
Third quartile of skewness among attributes of the numeric type.
35591.34
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
2.8
First quartile of kurtosis among attributes of the numeric type.
15.74
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.41
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
7.43
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
464.08
Mean of means among attributes of the numeric type.
-2.05
First quartile of skewness among attributes of the numeric type.
-0.33
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.35
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task