Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5704

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5704

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5704 (TID: 101509), and it has 126 rows and 60 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

62 features

pXC50 (target)numeric96 unique values
0 missing
molecule_id (row identifier)nominal126 unique values
0 missing
IC2numeric97 unique values
0 missing
MATS7snumeric109 unique values
0 missing
GATS5inumeric98 unique values
0 missing
BIC2numeric78 unique values
0 missing
MATS5vnumeric97 unique values
0 missing
Eig06_AEA.ri.numeric83 unique values
0 missing
JGI4numeric29 unique values
0 missing
Eig05_AEA.bo.numeric69 unique values
0 missing
Eig05_EA.bo.numeric75 unique values
0 missing
Eig08_EA.bo.numeric65 unique values
0 missing
SM15_AEA.ri.numeric75 unique values
0 missing
Eig08_AEA.bo.numeric72 unique values
0 missing
MATS2mnumeric76 unique values
0 missing
SIC2numeric77 unique values
0 missing
CIC2numeric99 unique values
0 missing
MATS5pnumeric91 unique values
0 missing
GATS8enumeric119 unique values
0 missing
Eig06_EAnumeric78 unique values
0 missing
SM14_AEA.bo.numeric78 unique values
0 missing
GATS8snumeric122 unique values
0 missing
ATS6snumeric116 unique values
0 missing
Eig09_EAnumeric74 unique values
0 missing
Eig10_AEA.dm.numeric72 unique values
0 missing
Eig13_AEA.ed.numeric60 unique values
0 missing
SM03_AEA.dm.numeric74 unique values
0 missing
GATS1snumeric55 unique values
0 missing
SM09_EA.ri.numeric104 unique values
0 missing
SM10_EA.ri.numeric103 unique values
0 missing
SM11_EA.ri.numeric106 unique values
0 missing
Eig08_AEA.ri.numeric112 unique values
0 missing
Eig08_EAnumeric85 unique values
0 missing
Eig08_EA.ri.numeric102 unique values
0 missing
SM02_AEA.dm.numeric85 unique values
0 missing
Eta_betaP_Anumeric57 unique values
0 missing
GATS7inumeric107 unique values
0 missing
MATS7enumeric113 unique values
0 missing
ATSC2inumeric91 unique values
0 missing
GATS5pnumeric100 unique values
0 missing
SM12_EA.ri.numeric101 unique values
0 missing
SM13_EA.ri.numeric103 unique values
0 missing
SM14_EA.ri.numeric100 unique values
0 missing
SM15_EA.ri.numeric101 unique values
0 missing
SM03_EA.ri.numeric64 unique values
0 missing
ON0numeric46 unique values
0 missing
ATSC5inumeric117 unique values
0 missing
DBInumeric23 unique values
0 missing
Eig03_AEA.ri.numeric80 unique values
0 missing
SM04_EA.ri.numeric100 unique values
0 missing
Eig09_EA.ed.numeric81 unique values
0 missing
SM04_AEA.ri.numeric81 unique values
0 missing
Eig06_EA.ed.numeric71 unique values
0 missing
SM15_AEA.dm.numeric71 unique values
0 missing
ATS2snumeric100 unique values
0 missing
ATS3snumeric107 unique values
0 missing
Eig03_EAnumeric60 unique values
0 missing
SM11_AEA.bo.numeric60 unique values
0 missing
SpMin1_Bh.i.numeric59 unique values
0 missing
Eig04_AEA.dm.numeric75 unique values
0 missing
GATS8inumeric110 unique values
0 missing
Eig11_AEA.dm.numeric71 unique values
0 missing

62 properties

126
Number of instances (rows) of the dataset.
62
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
61
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.49
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.83
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.09
Mean skewness among attributes of the numeric type.
2.67
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
0.42
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.1
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.6
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.26
Second quartile (Median) of standard deviation of attributes of the numeric type.
4.02
Maximum kurtosis among attributes of the numeric type.
-0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
18.91
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-0.37
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.39
Percentage of numeric attributes.
5.31
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.89
Minimum skewness among attributes of the numeric type.
1.61
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.86
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.43
Third quartile of skewness among attributes of the numeric type.
2.43
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.18
First quartile of kurtosis among attributes of the numeric type.
0.46
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.07
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.67
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
4.22
Mean of means among attributes of the numeric type.
-0.2
First quartile of skewness among attributes of the numeric type.
0.17
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.2
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task