Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1913

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1913

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1913 (TID: 197), and it has 1243 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric496 unique values
0 missing
molecule_id (row identifier)nominal1243 unique values
0 missing
FCFP4_1024b820numeric2 unique values
0 missing
FCFP4_1024b840numeric2 unique values
0 missing
FCFP4_1024b525numeric2 unique values
0 missing
FCFP4_1024b710numeric2 unique values
0 missing
FCFP4_1024b622numeric2 unique values
0 missing
FCFP4_1024b375numeric2 unique values
0 missing
FCFP4_1024b687numeric2 unique values
0 missing
FCFP4_1024b152numeric2 unique values
0 missing
FCFP4_1024b47numeric2 unique values
0 missing
FCFP4_1024b283numeric2 unique values
0 missing
FCFP4_1024b44numeric2 unique values
0 missing
FCFP4_1024b882numeric2 unique values
0 missing
FCFP4_1024b583numeric2 unique values
0 missing
FCFP4_1024b61numeric2 unique values
0 missing
FCFP4_1024b11numeric2 unique values
0 missing
FCFP4_1024b415numeric2 unique values
0 missing
FCFP4_1024b499numeric2 unique values
0 missing
FCFP4_1024b42numeric2 unique values
0 missing
FCFP4_1024b661numeric2 unique values
0 missing
FCFP4_1024b764numeric2 unique values
0 missing
FCFP4_1024b921numeric2 unique values
0 missing
FCFP4_1024b281numeric2 unique values
0 missing
FCFP4_1024b908numeric2 unique values
0 missing
FCFP4_1024b674numeric2 unique values
0 missing
FCFP4_1024b412numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b376numeric2 unique values
0 missing
FCFP4_1024b974numeric2 unique values
0 missing
FCFP4_1024b933numeric2 unique values
0 missing
FCFP4_1024b385numeric2 unique values
0 missing
FCFP4_1024b96numeric2 unique values
0 missing
FCFP4_1024b153numeric2 unique values
0 missing
FCFP4_1024b644numeric2 unique values
0 missing
FCFP4_1024b434numeric2 unique values
0 missing
FCFP4_1024b204numeric2 unique values
0 missing
FCFP4_1024b604numeric2 unique values
0 missing
FCFP4_1024b166numeric2 unique values
0 missing
FCFP4_1024b985numeric2 unique values
0 missing
FCFP4_1024b876numeric2 unique values
0 missing
FCFP4_1024b103numeric2 unique values
0 missing
FCFP4_1024b181numeric2 unique values
0 missing
FCFP4_1024b932numeric2 unique values
0 missing
FCFP4_1024b15numeric2 unique values
0 missing
FCFP4_1024b120numeric2 unique values
0 missing
FCFP4_1024b316numeric2 unique values
0 missing
FCFP4_1024b429numeric2 unique values
0 missing
FCFP4_1024b508numeric2 unique values
0 missing
FCFP4_1024b745numeric2 unique values
0 missing
FCFP4_1024b123numeric2 unique values
0 missing
FCFP4_1024b801numeric2 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing
FCFP4_1024b942numeric2 unique values
0 missing
FCFP4_1024b41numeric2 unique values
0 missing
FCFP4_1024b329numeric2 unique values
0 missing
FCFP4_1024b900numeric2 unique values
0 missing
FCFP4_1024b303numeric2 unique values
0 missing
FCFP4_1024b936numeric2 unique values
0 missing
FCFP4_1024b65numeric2 unique values
0 missing
FCFP4_1024b143numeric2 unique values
0 missing
FCFP4_1024b235numeric2 unique values
0 missing
FCFP4_1024b846numeric2 unique values
0 missing
FCFP4_1024b495numeric2 unique values
0 missing
FCFP4_1024b899numeric2 unique values
0 missing
FCFP4_1024b626numeric2 unique values
0 missing
FCFP4_1024b37numeric2 unique values
0 missing
FCFP4_1024b553numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b957numeric2 unique values
0 missing
FCFP4_1024b738numeric2 unique values
0 missing
FCFP4_1024b787numeric2 unique values
0 missing
FCFP4_1024b128numeric2 unique values
0 missing
FCFP4_1024b610numeric2 unique values
0 missing
FCFP4_1024b34numeric2 unique values
0 missing
FCFP4_1024b630numeric2 unique values
0 missing
FCFP4_1024b669numeric2 unique values
0 missing
FCFP4_1024b182numeric2 unique values
0 missing
FCFP4_1024b983numeric2 unique values
0 missing
FCFP4_1024b913numeric2 unique values
0 missing
FCFP4_1024b947numeric2 unique values
0 missing
FCFP4_1024b902numeric2 unique values
0 missing
FCFP4_1024b174numeric2 unique values
0 missing
FCFP4_1024b298numeric2 unique values
0 missing
FCFP4_1024b907numeric2 unique values
0 missing
FCFP4_1024b817numeric2 unique values
0 missing
FCFP4_1024b296numeric2 unique values
0 missing
FCFP4_1024b134numeric2 unique values
0 missing
FCFP4_1024b742numeric2 unique values
0 missing
FCFP4_1024b971numeric2 unique values
0 missing
FCFP4_1024b937numeric2 unique values
0 missing
FCFP4_1024b193numeric2 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b260numeric2 unique values
0 missing
FCFP4_1024b406numeric2 unique values
0 missing
FCFP4_1024b351numeric2 unique values
0 missing
FCFP4_1024b788numeric2 unique values
0 missing
FCFP4_1024b2numeric2 unique values
0 missing
FCFP4_1024b635numeric2 unique values
0 missing
FCFP4_1024b997numeric2 unique values
0 missing
FCFP4_1024b944numeric2 unique values
0 missing
FCFP4_1024b677numeric2 unique values
0 missing
FCFP4_1024b855numeric2 unique values
0 missing
FCFP4_1024b301numeric2 unique values
0 missing

62 properties

1243
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
10.04
Maximum skewness among attributes of the numeric type.
0.1
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
4.69
Third quartile of skewness among attributes of the numeric type.
1.35
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.91
First quartile of kurtosis among attributes of the numeric type.
0.44
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.04
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
9.53
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.25
Mean of means among attributes of the numeric type.
0.92
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.2
First quartile of standard deviation of attributes of the numeric type.
-0.08
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
2.01
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.08
Number of attributes divided by the number of instances.
2.55
Mean skewness among attributes of the numeric type.
0.16
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.34
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.89
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.35
Second quartile (Median) of standard deviation of attributes of the numeric type.
99
Maximum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
6.01
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
19.99
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.29
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.75
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task