Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2304405

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2304405

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2304405 (TID: 105568), and it has 109 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric84 unique values
0 missing
molecule_id (row identifier)nominal109 unique values
0 missing
GATS7enumeric98 unique values
0 missing
CATS2D_06_ALnumeric22 unique values
0 missing
IC2numeric93 unique values
0 missing
JGI6numeric13 unique values
0 missing
PW4numeric41 unique values
0 missing
SpMax2_Bh.s.numeric35 unique values
0 missing
SsssCHnumeric97 unique values
0 missing
SpMin1_Bh.i.numeric28 unique values
0 missing
SpMin1_Bh.p.numeric38 unique values
0 missing
SpMin1_Bh.v.numeric38 unique values
0 missing
P_VSA_LogP_4numeric38 unique values
0 missing
P_VSA_p_2numeric64 unique values
0 missing
P_VSA_v_2numeric67 unique values
0 missing
TPSA.NO.numeric64 unique values
0 missing
TPSA.Tot.numeric69 unique values
0 missing
P_VSA_MR_5numeric87 unique values
0 missing
CATS2D_09_DLnumeric27 unique values
0 missing
LLS_01numeric6 unique values
0 missing
P_VSA_s_3numeric90 unique values
0 missing
SAaccnumeric63 unique values
0 missing
CATS2D_02_DLnumeric22 unique values
0 missing
PW5numeric39 unique values
0 missing
MATS7pnumeric69 unique values
0 missing
CATS2D_05_LLnumeric15 unique values
0 missing
CATS2D_06_LLnumeric21 unique values
0 missing
CATS2D_07_LLnumeric24 unique values
0 missing
GATS7vnumeric79 unique values
0 missing
O.numeric51 unique values
0 missing
SM05_EA.bo.numeric78 unique values
0 missing
X2Anumeric44 unique values
0 missing
CIC5numeric89 unique values
0 missing
Eig06_EA.bo.numeric79 unique values
0 missing
SM03_EA.bo.numeric58 unique values
0 missing
GATS7pnumeric83 unique values
0 missing
ATSC7enumeric101 unique values
0 missing
GGI6numeric85 unique values
0 missing
SIC5numeric63 unique values
0 missing
CATS2D_08_DLnumeric25 unique values
0 missing
IC3numeric94 unique values
0 missing
IC4numeric89 unique values
0 missing
IC5numeric91 unique values
0 missing
P_VSA_s_6numeric56 unique values
0 missing
MATS2enumeric67 unique values
0 missing
MATS5pnumeric64 unique values
0 missing
SM02_EA.dm.numeric62 unique values
0 missing
SM04_EA.dm.numeric64 unique values
0 missing
SM06_EA.dm.numeric63 unique values
0 missing
SM08_EA.dm.numeric63 unique values
0 missing
SM10_EA.dm.numeric61 unique values
0 missing
SM12_EA.dm.numeric61 unique values
0 missing
SM14_EA.dm.numeric60 unique values
0 missing
Eig05_EA.bo.numeric70 unique values
0 missing
GGI1numeric34 unique values
0 missing
GNarnumeric65 unique values
0 missing
HNarnumeric71 unique values
0 missing
nHetnumeric23 unique values
0 missing
nNnumeric15 unique values
0 missing
SM15_AEA.ri.numeric70 unique values
0 missing
X0Anumeric51 unique values
0 missing
Hynumeric90 unique values
0 missing
Eig01_AEA.dm.numeric50 unique values
0 missing
SM03_EA.dm.numeric35 unique values
0 missing
SM05_EA.dm.numeric43 unique values
0 missing

62 properties

109
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
1.78
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.41
Third quartile of skewness among attributes of the numeric type.
212.58
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.87
First quartile of kurtosis among attributes of the numeric type.
5.76
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.62
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.13
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
38.49
Mean of means among attributes of the numeric type.
-0.79
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.15
First quartile of standard deviation of attributes of the numeric type.
-0.14
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.32
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.6
Number of attributes divided by the number of instances.
-0.14
Mean skewness among attributes of the numeric type.
5.25
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
22.49
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.14
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.31
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.06
Second quartile (Median) of standard deviation of attributes of the numeric type.
2.95
Maximum kurtosis among attributes of the numeric type.
-5.34
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
347.07
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.22
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
10.94
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.39
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task