Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3308

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3308

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3308 (TID: 12013), and it has 200 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric139 unique values
0 missing
molecule_id (row identifier)nominal200 unique values
0 missing
Eig04_AEA.dm.numeric106 unique values
0 missing
CATS2D_03_AAnumeric7 unique values
0 missing
SpMAD_EA.dm.numeric116 unique values
0 missing
SpMaxA_EA.dm.numeric58 unique values
0 missing
CATS2D_06_AAnumeric11 unique values
0 missing
C.040numeric8 unique values
0 missing
SM02_EA.dm.numeric72 unique values
0 missing
NdssCnumeric9 unique values
0 missing
Eig02_EA.dm.numeric26 unique values
0 missing
P_VSA_s_5numeric17 unique values
0 missing
SpAD_EA.dm.numeric72 unique values
0 missing
X1Anumeric39 unique values
0 missing
SM04_EA.dm.numeric72 unique values
0 missing
Eig01_EA.dm.numeric23 unique values
0 missing
SM06_EA.dm.numeric66 unique values
0 missing
SM08_EA.dm.numeric57 unique values
0 missing
SpMax_EA.dm.numeric23 unique values
0 missing
SpDiam_EA.dm.numeric27 unique values
0 missing
Eig03_AEA.dm.numeric92 unique values
0 missing
SM10_EA.dm.numeric57 unique values
0 missing
SM12_EA.dm.numeric55 unique values
0 missing
SM14_EA.dm.numeric55 unique values
0 missing
LOCnumeric99 unique values
0 missing
CATS2D_05_AAnumeric8 unique values
0 missing
SpMax2_Bh.s.numeric30 unique values
0 missing
GNarnumeric78 unique values
0 missing
C.039numeric2 unique values
0 missing
nArCOnumeric2 unique values
0 missing
MATS5snumeric159 unique values
0 missing
MCDnumeric90 unique values
0 missing
Yindexnumeric122 unique values
0 missing
Eig01_AEA.ri.numeric78 unique values
0 missing
Eig01_EAnumeric66 unique values
0 missing
SM09_AEA.bo.numeric66 unique values
0 missing
SpDiam_EAnumeric67 unique values
0 missing
SpMax_AEA.ri.numeric78 unique values
0 missing
SpMax_EAnumeric66 unique values
0 missing
X0Anumeric47 unique values
0 missing
Eig01_EA.bo.numeric66 unique values
0 missing
SM11_AEA.ri.numeric66 unique values
0 missing
SpDiam_EA.bo.numeric66 unique values
0 missing
SpMax_EA.bo.numeric66 unique values
0 missing
Eig01_AEA.bo.numeric71 unique values
0 missing
SpMax_AEA.bo.numeric71 unique values
0 missing
GATS8snumeric170 unique values
0 missing
ARRnumeric58 unique values
0 missing
Eig02_EA.bo.numeric77 unique values
0 missing
SM12_AEA.ri.numeric77 unique values
0 missing
Eig02_AEA.ed.numeric60 unique values
0 missing
Eig02_AEA.ri.numeric78 unique values
0 missing
Eig02_EAnumeric83 unique values
0 missing
SM10_AEA.bo.numeric83 unique values
0 missing
Eig02_AEA.bo.numeric70 unique values
0 missing
SM15_AEA.ed.numeric112 unique values
0 missing
SsFnumeric48 unique values
0 missing
Vindexnumeric92 unique values
0 missing
Xindexnumeric98 unique values
0 missing
Eig05_EA.dm.numeric31 unique values
0 missing
SM12_EA.ed.numeric102 unique values
0 missing
SM13_EA.ed.numeric98 unique values
0 missing
SM14_EA.ed.numeric100 unique values
0 missing
SM15_EA.ed.numeric95 unique values
0 missing
SM15_EA.bo.numeric125 unique values
0 missing
HNarnumeric87 unique values
0 missing
SM08_EA.ed.numeric112 unique values
0 missing

62 properties

200
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
-0.69
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.34
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
3.77
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.14
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
1.46
Mean standard deviation of attributes of the numeric type.
-0.36
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
0.42
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.85
Minimum kurtosis among attributes of the numeric type.
-0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
40.64
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.36
Third quartile of kurtosis among attributes of the numeric type.
37.5
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
5.75
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-3.25
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.55
Third quartile of skewness among attributes of the numeric type.
3.93
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.44
First quartile of kurtosis among attributes of the numeric type.
1.43
Third quartile of standard deviation of attributes of the numeric type.
22.28
Maximum standard deviation of attributes of the numeric type.
Number of instances belonging to the least frequent class.
1.61
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
2.41
Mean kurtosis among attributes of the numeric type.
-0.44
First quartile of skewness among attributes of the numeric type.
6.62
Mean of means among attributes of the numeric type.
0.23
First quartile of standard deviation of attributes of the numeric type.
0.18
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task