Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3160

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3160

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3160 (TID: 10045), and it has 470 rows and 51 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

53 features

pXC50 (target)numeric316 unique values
0 missing
molecule_id (row identifier)nominal470 unique values
0 missing
FCFP4_1024b260numeric2 unique values
0 missing
FCFP4_1024b105numeric2 unique values
0 missing
FCFP4_1024b960numeric2 unique values
0 missing
FCFP4_1024b205numeric2 unique values
0 missing
FCFP4_1024b970numeric2 unique values
0 missing
FCFP4_1024b799numeric2 unique values
0 missing
FCFP4_1024b513numeric2 unique values
0 missing
FCFP4_1024b710numeric2 unique values
0 missing
FCFP4_1024b171numeric2 unique values
0 missing
FCFP4_1024b514numeric2 unique values
0 missing
FCFP4_1024b412numeric2 unique values
0 missing
FCFP4_1024b206numeric2 unique values
0 missing
FCFP4_1024b351numeric2 unique values
0 missing
FCFP4_1024b87numeric2 unique values
0 missing
FCFP4_1024b511numeric2 unique values
0 missing
FCFP4_1024b967numeric2 unique values
0 missing
FCFP4_1024b731numeric2 unique values
0 missing
FCFP4_1024b145numeric2 unique values
0 missing
FCFP4_1024b992numeric2 unique values
0 missing
FCFP4_1024b5numeric2 unique values
0 missing
FCFP4_1024b240numeric2 unique values
0 missing
FCFP4_1024b133numeric2 unique values
0 missing
FCFP4_1024b616numeric2 unique values
0 missing
FCFP4_1024b20numeric2 unique values
0 missing
FCFP4_1024b173numeric2 unique values
0 missing
FCFP4_1024b298numeric2 unique values
0 missing
FCFP4_1024b194numeric2 unique values
0 missing
FCFP4_1024b21numeric2 unique values
0 missing
FCFP4_1024b245numeric2 unique values
0 missing
FCFP4_1024b708numeric2 unique values
0 missing
FCFP4_1024b587numeric2 unique values
0 missing
FCFP4_1024b824numeric2 unique values
0 missing
FCFP4_1024b905numeric2 unique values
0 missing
FCFP4_1024b28numeric2 unique values
0 missing
FCFP4_1024b667numeric2 unique values
0 missing
FCFP4_1024b3numeric2 unique values
0 missing
FCFP4_1024b600numeric2 unique values
0 missing
FCFP4_1024b787numeric2 unique values
0 missing
FCFP4_1024b680numeric2 unique values
0 missing
FCFP4_1024b136numeric2 unique values
0 missing
FCFP4_1024b475numeric2 unique values
0 missing
FCFP4_1024b196numeric2 unique values
0 missing
FCFP4_1024b65numeric2 unique values
0 missing
FCFP4_1024b888numeric2 unique values
0 missing
FCFP4_1024b376numeric2 unique values
0 missing
FCFP4_1024b360numeric2 unique values
0 missing
FCFP4_1024b652numeric2 unique values
0 missing
FCFP4_1024b745numeric2 unique values
0 missing
FCFP4_1024b747numeric2 unique values
0 missing
FCFP4_1024b668numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing

62 properties

470
Number of instances (rows) of the dataset.
53
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
52
Number of numeric attributes.
1
Number of nominal attributes.
4.09
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.53
Mean of means among attributes of the numeric type.
-0.68
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.27
First quartile of standard deviation of attributes of the numeric type.
-0.12
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.32
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.11
Number of attributes divided by the number of instances.
0.98
Mean skewness among attributes of the numeric type.
0.54
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.39
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.02
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-1.99
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.4
Second quartile (Median) of standard deviation of attributes of the numeric type.
18.76
Maximum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
6.74
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
8.24
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.11
Percentage of numeric attributes.
0.67
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.98
Minimum skewness among attributes of the numeric type.
1.89
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.55
Maximum skewness among attributes of the numeric type.
0.2
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.19
Third quartile of skewness among attributes of the numeric type.
1.34
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.66
First quartile of kurtosis among attributes of the numeric type.
0.48
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.08
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task