Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3486

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3486

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3486 (TID: 100588), and it has 119 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric84 unique values
0 missing
molecule_id (row identifier)nominal119 unique values
0 missing
SdssCnumeric45 unique values
0 missing
SAdonnumeric12 unique values
0 missing
C.044numeric2 unique values
0 missing
P_VSA_e_5numeric20 unique values
0 missing
O.057numeric3 unique values
0 missing
NsOHnumeric3 unique values
0 missing
SsOHnumeric38 unique values
0 missing
nArNHRnumeric3 unique values
0 missing
CATS2D_01_AAnumeric3 unique values
0 missing
O.numeric32 unique values
0 missing
P_VSA_p_2numeric35 unique values
0 missing
C.030numeric2 unique values
0 missing
C.035numeric2 unique values
0 missing
CATS2D_02_AAnumeric6 unique values
0 missing
N.075numeric4 unique values
0 missing
NaaNnumeric4 unique values
0 missing
nPyrimidinesnumeric2 unique values
0 missing
nTriazolesnumeric2 unique values
0 missing
SaaNnumeric81 unique values
0 missing
SRW09numeric20 unique values
0 missing
nOnumeric8 unique values
0 missing
piPC06numeric103 unique values
0 missing
SssNHnumeric91 unique values
0 missing
PHInumeric99 unique values
0 missing
SpMAD_EA.bo.numeric87 unique values
0 missing
SM11_EA.bo.numeric94 unique values
0 missing
SM12_EA.bo.numeric92 unique values
0 missing
N.073numeric4 unique values
0 missing
piPC07numeric101 unique values
0 missing
P_VSA_LogP_4numeric26 unique values
0 missing
P_VSA_MR_7numeric23 unique values
0 missing
SM10_EA.bo.numeric96 unique values
0 missing
CATS2D_03_DAnumeric4 unique values
0 missing
S2Knumeric94 unique values
0 missing
nR05numeric3 unique values
0 missing
CATS2D_03_AAnumeric3 unique values
0 missing
SM06_EA.bo.numeric100 unique values
0 missing
PCDnumeric97 unique values
0 missing
SM07_EA.bo.numeric96 unique values
0 missing
SM08_EA.bo.numeric92 unique values
0 missing
SdOnumeric44 unique values
0 missing
P_VSA_MR_2numeric32 unique values
0 missing
P_VSA_m_3numeric28 unique values
0 missing
Eig01_EA.bo.numeric60 unique values
0 missing
SM11_AEA.ri.numeric60 unique values
0 missing
SpDiam_EA.bo.numeric60 unique values
0 missing
SpMax_EA.bo.numeric60 unique values
0 missing
C.040numeric4 unique values
0 missing
H.051numeric5 unique values
0 missing
SM05_EA.bo.numeric85 unique values
0 missing
piPC05numeric95 unique values
0 missing
SM09_EA.bo.numeric93 unique values
0 missing
Chi1_EA.dm.numeric89 unique values
0 missing
NdssCnumeric5 unique values
0 missing
SM13_EA.bo.numeric91 unique values
0 missing
SM14_EA.bo.numeric91 unique values
0 missing
SM15_EA.bo.numeric92 unique values
0 missing
N.numeric44 unique values
0 missing
NdOnumeric5 unique values
0 missing
O.058numeric4 unique values
0 missing
CATS2D_07_DLnumeric8 unique values
0 missing
piIDnumeric100 unique values
0 missing
piPC04numeric93 unique values
0 missing

62 properties

119
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
2.79
Maximum skewness among attributes of the numeric type.
0.1
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.91
Third quartile of skewness among attributes of the numeric type.
54.64
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.99
First quartile of kurtosis among attributes of the numeric type.
1.7
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.82
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.65
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
10.68
Mean of means among attributes of the numeric type.
-0.71
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.49
First quartile of standard deviation of attributes of the numeric type.
0.22
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.98
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.55
Number of attributes divided by the number of instances.
0.09
Mean skewness among attributes of the numeric type.
4.38
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
4.88
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.38
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.84
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.72
Second quartile (Median) of standard deviation of attributes of the numeric type.
13.33
Maximum kurtosis among attributes of the numeric type.
-0.37
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
84.89
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.09
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
11.91
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.76
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task