Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3231

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3231

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3231 (TID: 10811), and it has 1480 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric276 unique values
0 missing
molecule_id (row identifier)nominal1480 unique values
0 missing
C.027numeric5 unique values
0 missing
N.067numeric4 unique values
0 missing
C.008numeric5 unique values
0 missing
SsssCHnumeric417 unique values
0 missing
nN.C.N.numeric2 unique values
0 missing
H.052numeric17 unique values
0 missing
P_VSA_MR_5numeric1072 unique values
0 missing
NsssCHnumeric6 unique values
0 missing
Cl.090numeric2 unique values
0 missing
H.050numeric12 unique values
0 missing
nHDonnumeric12 unique values
0 missing
ATSC4vnumeric1365 unique values
0 missing
nRNHRnumeric4 unique values
0 missing
SpMin4_Bh.s.numeric647 unique values
0 missing
CIC0numeric840 unique values
0 missing
SpMin2_Bh.i.numeric364 unique values
0 missing
ATSC3vnumeric1338 unique values
0 missing
CATS2D_02_DLnumeric12 unique values
0 missing
CATS2D_08_LLnumeric25 unique values
0 missing
SpMin3_Bh.v.numeric474 unique values
0 missing
SpMin2_Bh.e.numeric354 unique values
0 missing
SpMax2_Bh.e.numeric353 unique values
0 missing
ATSC2vnumeric1276 unique values
0 missing
ATSC5vnumeric1371 unique values
0 missing
H.049numeric5 unique values
0 missing
nHnumeric43 unique values
0 missing
ATSC1mnumeric1245 unique values
0 missing
SpMax2_Bh.i.numeric330 unique values
0 missing
SpMin3_Bh.p.numeric444 unique values
0 missing
ATSC1vnumeric1176 unique values
0 missing
SpMax4_Bh.p.numeric688 unique values
0 missing
SM04_EA.dm.numeric502 unique values
0 missing
SM06_EA.dm.numeric462 unique values
0 missing
SpMax2_Bh.p.numeric403 unique values
0 missing
SM08_EA.dm.numeric405 unique values
0 missing
SpMin3_Bh.m.numeric502 unique values
0 missing
SpMax2_Bh.v.numeric389 unique values
0 missing
SpMin4_Bh.e.numeric634 unique values
0 missing
ATS3inumeric821 unique values
0 missing
SpDiam_EA.dm.numeric139 unique values
0 missing
NRSnumeric6 unique values
0 missing
SpMax4_Bh.v.numeric706 unique values
0 missing
SpMAD_AEA.dm.numeric242 unique values
0 missing
SpMin6_Bh.s.numeric584 unique values
0 missing
SpMin6_Bh.m.numeric591 unique values
0 missing
ATSC6vnumeric1371 unique values
0 missing
X1Pernumeric1268 unique values
0 missing
RBNnumeric18 unique values
0 missing
X1MulPernumeric1277 unique values
0 missing
SpMin3_Bh.s.numeric558 unique values
0 missing
SM10_EA.dm.numeric331 unique values
0 missing
SpMin2_Bh.v.numeric293 unique values
0 missing
ATS2inumeric805 unique values
0 missing
SpMin5_Bh.v.numeric588 unique values
0 missing
ON1Vnumeric1059 unique values
0 missing
ATSC8vnumeric1357 unique values
0 missing
X1Kupnumeric1275 unique values
0 missing
ATS1enumeric735 unique values
0 missing
Sinumeric1186 unique values
0 missing
SM12_EA.dm.numeric308 unique values
0 missing
SM14_EA.dm.numeric285 unique values
0 missing
ATS1inumeric746 unique values
0 missing
Hynumeric559 unique values
0 missing
nBTnumeric81 unique values
0 missing
ATS4inumeric870 unique values
0 missing
SpMin8_Bh.i.numeric600 unique values
0 missing
CATS2D_07_DAnumeric8 unique values
0 missing
SpMin4_Bh.m.numeric568 unique values
0 missing
ATSC4mnumeric1403 unique values
0 missing
ATS3enumeric807 unique values
0 missing

62 properties

1480
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.05
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
4.79
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2.07
Mean skewness among attributes of the numeric type.
3.26
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.67
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.96
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.67
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.9
Second quartile (Median) of standard deviation of attributes of the numeric type.
257.85
Maximum kurtosis among attributes of the numeric type.
-0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
58.59
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
85.6
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
5.09
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-11.35
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
11.73
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
4.97
Third quartile of skewness among attributes of the numeric type.
39.39
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.22
First quartile of kurtosis among attributes of the numeric type.
2.99
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.49
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
46.3
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.13
Mean of means among attributes of the numeric type.
-0.62
First quartile of skewness among attributes of the numeric type.
0.03
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.23
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task