Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1875

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1875

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1875 (TID: 168), and it has 412 rows and 51 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

53 features

pXC50 (target)numeric211 unique values
0 missing
molecule_id (row identifier)nominal412 unique values
0 missing
FCFP4_1024b459numeric2 unique values
0 missing
FCFP4_1024b769numeric2 unique values
0 missing
FCFP4_1024b640numeric2 unique values
0 missing
FCFP4_1024b90numeric2 unique values
0 missing
FCFP4_1024b313numeric2 unique values
0 missing
FCFP4_1024b283numeric2 unique values
0 missing
FCFP4_1024b153numeric2 unique values
0 missing
FCFP4_1024b54numeric2 unique values
0 missing
FCFP4_1024b152numeric2 unique values
0 missing
FCFP4_1024b1004numeric2 unique values
0 missing
FCFP4_1024b630numeric2 unique values
0 missing
FCFP4_1024b680numeric2 unique values
0 missing
FCFP4_1024b817numeric2 unique values
0 missing
FCFP4_1024b185numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b899numeric2 unique values
0 missing
FCFP4_1024b490numeric2 unique values
0 missing
FCFP4_1024b256numeric2 unique values
0 missing
FCFP4_1024b532numeric2 unique values
0 missing
FCFP4_1024b580numeric2 unique values
0 missing
FCFP4_1024b201numeric2 unique values
0 missing
FCFP4_1024b290numeric2 unique values
0 missing
FCFP4_1024b400numeric2 unique values
0 missing
FCFP4_1024b469numeric2 unique values
0 missing
FCFP4_1024b600numeric2 unique values
0 missing
FCFP4_1024b37numeric2 unique values
0 missing
FCFP4_1024b799numeric2 unique values
0 missing
FCFP4_1024b128numeric2 unique values
0 missing
FCFP4_1024b298numeric2 unique values
0 missing
FCFP4_1024b33numeric2 unique values
0 missing
FCFP4_1024b401numeric2 unique values
0 missing
FCFP4_1024b985numeric2 unique values
0 missing
FCFP4_1024b351numeric2 unique values
0 missing
FCFP4_1024b319numeric2 unique values
0 missing
FCFP4_1024b57numeric2 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing
FCFP4_1024b427numeric2 unique values
0 missing
FCFP4_1024b644numeric2 unique values
0 missing
FCFP4_1024b450numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b641numeric2 unique values
0 missing
FCFP4_1024b569numeric2 unique values
0 missing
FCFP4_1024b806numeric2 unique values
0 missing
FCFP4_1024b614numeric2 unique values
0 missing
FCFP4_1024b895numeric2 unique values
0 missing
FCFP4_1024b905numeric2 unique values
0 missing
FCFP4_1024b354numeric2 unique values
0 missing
FCFP4_1024b727numeric2 unique values
0 missing
FCFP4_1024b268numeric2 unique values
0 missing
FCFP4_1024b336numeric2 unique values
0 missing
FCFP4_1024b711numeric2 unique values
0 missing

62 properties

412
Number of instances (rows) of the dataset.
53
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
52
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.13
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.07
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.73
Mean skewness among attributes of the numeric type.
0.24
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
0.38
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.2
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2.01
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.41
Second quartile (Median) of standard deviation of attributes of the numeric type.
32.89
Maximum kurtosis among attributes of the numeric type.
0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
7.49
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
10.31
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.11
Percentage of numeric attributes.
0.4
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.78
Minimum skewness among attributes of the numeric type.
1.89
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.89
Maximum skewness among attributes of the numeric type.
0.16
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.5
Third quartile of skewness among attributes of the numeric type.
1.42
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.36
First quartile of kurtosis among attributes of the numeric type.
0.47
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.07
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
5.54
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.41
Mean of means among attributes of the numeric type.
0.39
First quartile of skewness among attributes of the numeric type.
0
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.25
First quartile of standard deviation of attributes of the numeric type.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task