Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3251

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3251

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3251 (TID: 11531), and it has 89 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric32 unique values
0 missing
molecule_id (row identifier)nominal89 unique values
0 missing
CATS2D_08_NLnumeric4 unique values
0 missing
Eig01_EA.bo.numeric46 unique values
0 missing
SM11_AEA.ri.numeric46 unique values
0 missing
SpDiam_EA.bo.numeric46 unique values
0 missing
SpMax_EA.bo.numeric46 unique values
0 missing
CATS2D_01_ANnumeric4 unique values
0 missing
CATS2D_01_DNnumeric3 unique values
0 missing
CATS2D_02_NLnumeric4 unique values
0 missing
CATS2D_03_NLnumeric5 unique values
0 missing
SpMax1_Bh.p.numeric60 unique values
0 missing
C.040numeric4 unique values
0 missing
nRCONHRnumeric2 unique values
0 missing
nBMnumeric14 unique values
0 missing
Ucnumeric14 unique values
0 missing
Uinumeric14 unique values
0 missing
CATS2D_07_NLnumeric4 unique values
0 missing
SdOnumeric83 unique values
0 missing
SaaOnumeric29 unique values
0 missing
Yindexnumeric77 unique values
0 missing
CATS2D_09_ALnumeric10 unique values
0 missing
CATS2D_03_ALnumeric14 unique values
0 missing
CATS2D_09_NLnumeric3 unique values
0 missing
NdOnumeric5 unique values
0 missing
O.058numeric5 unique values
0 missing
SM14_EA.bo.numeric79 unique values
0 missing
SM15_EA.bo.numeric79 unique values
0 missing
SpMax2_Bh.i.numeric54 unique values
0 missing
CATS2D_04_DAnumeric7 unique values
0 missing
SssssCnumeric48 unique values
0 missing
Eig15_AEA.dm.numeric72 unique values
0 missing
SpMax1_Bh.v.numeric57 unique values
0 missing
SpMax1_Bh.e.numeric60 unique values
0 missing
Vindexnumeric60 unique values
0 missing
SpMax2_Bh.e.numeric57 unique values
0 missing
NdssCnumeric9 unique values
0 missing
H.051numeric6 unique values
0 missing
P_VSA_MR_7numeric20 unique values
0 missing
Eig05_AEA.dm.numeric53 unique values
0 missing
D.Dtr09numeric35 unique values
0 missing
SRW09numeric18 unique values
0 missing
SM11_EA.bo.numeric81 unique values
0 missing
SM12_EA.bo.numeric79 unique values
0 missing
SpMax3_Bh.s.numeric28 unique values
0 missing
SpMax1_Bh.m.numeric49 unique values
0 missing
Xindexnumeric70 unique values
0 missing
MATS5inumeric80 unique values
0 missing
SM06_EA.bo.numeric72 unique values
0 missing
SM13_EA.bo.numeric82 unique values
0 missing
C.013numeric4 unique values
0 missing
C.027numeric2 unique values
0 missing
C.028numeric3 unique values
0 missing
F.083numeric4 unique values
0 missing
H.049numeric3 unique values
0 missing
Minumeric48 unique values
0 missing
nCRX3numeric4 unique values
0 missing
nFnumeric5 unique values
0 missing
nPyrimidinesnumeric3 unique values
0 missing
NsFnumeric5 unique values
0 missing
nXnumeric8 unique values
0 missing
P_VSA_e_6numeric5 unique values
0 missing
SpMAD_EA.dm.numeric64 unique values
0 missing
SpMax4_Bh.s.numeric33 unique values
0 missing
SsFnumeric33 unique values
0 missing

62 properties

89
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
-0.05
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.73
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.42
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.65
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
3.97
Mean standard deviation of attributes of the numeric type.
0.58
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
0.72
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.89
Minimum kurtosis among attributes of the numeric type.
-2.46
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
70.33
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.07
Third quartile of kurtosis among attributes of the numeric type.
55.52
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
5.39
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-2.33
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.27
Third quartile of skewness among attributes of the numeric type.
7.98
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.75
First quartile of kurtosis among attributes of the numeric type.
2.02
Third quartile of standard deviation of attributes of the numeric type.
78.36
Maximum standard deviation of attributes of the numeric type.
Number of instances belonging to the least frequent class.
0.46
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
2.88
Mean kurtosis among attributes of the numeric type.
-0.25
First quartile of skewness among attributes of the numeric type.
6.03
Mean of means among attributes of the numeric type.
0.32
First quartile of standard deviation of attributes of the numeric type.
0.49
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task