Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5067

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5067

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5067 (TID: 20112), and it has 240 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric141 unique values
0 missing
molecule_id (row identifier)nominal240 unique values
0 missing
Eig06_EA.ri.numeric173 unique values
0 missing
C.024numeric18 unique values
0 missing
Eig07_EA.bo.numeric135 unique values
0 missing
SpMin2_Bh.e.numeric91 unique values
0 missing
nCarnumeric20 unique values
0 missing
PCDnumeric188 unique values
0 missing
PCRnumeric146 unique values
0 missing
P_VSA_LogP_3numeric54 unique values
0 missing
Eig02_AEA.bo.numeric73 unique values
0 missing
nR06numeric7 unique values
0 missing
SpMin2_Bh.p.numeric103 unique values
0 missing
SpMin2_Bh.v.numeric99 unique values
0 missing
TRSnumeric21 unique values
0 missing
Eig05_EA.ri.numeric171 unique values
0 missing
ALOGPnumeric217 unique values
0 missing
ALOGP2numeric218 unique values
0 missing
piPC10numeric189 unique values
0 missing
Eig05_EA.ed.numeric135 unique values
0 missing
SM14_AEA.dm.numeric135 unique values
0 missing
Eig05_AEA.dm.numeric145 unique values
0 missing
Qindexnumeric29 unique values
0 missing
piPC05numeric178 unique values
0 missing
ATS5pnumeric216 unique values
0 missing
ATSC4pnumeric230 unique values
0 missing
Eig05_AEA.ed.numeric119 unique values
0 missing
ATSC3vnumeric223 unique values
0 missing
ATS4pnumeric220 unique values
0 missing
piPC09numeric189 unique values
0 missing
Eig05_EA.bo.numeric108 unique values
0 missing
Eta_beta_Anumeric143 unique values
0 missing
SM15_AEA.ri.numeric108 unique values
0 missing
SpMax2_Bh.v.numeric95 unique values
0 missing
Eig06_EAnumeric138 unique values
0 missing
SM14_AEA.bo.numeric138 unique values
0 missing
MPC05numeric92 unique values
0 missing
MPC10numeric126 unique values
0 missing
nCICnumeric8 unique values
0 missing
ARRnumeric84 unique values
0 missing
piPC07numeric181 unique values
0 missing
ATSC5pnumeric234 unique values
0 missing
Eig08_AEA.ed.numeric138 unique values
0 missing
piPC06numeric183 unique values
0 missing
SpMin1_Bh.e.numeric75 unique values
0 missing
Inflammat.80numeric2 unique values
0 missing
ATSC5vnumeric233 unique values
0 missing
nBnznumeric6 unique values
0 missing
X3vnumeric235 unique values
0 missing
ATS5vnumeric212 unique values
0 missing
X4vnumeric229 unique values
0 missing
ATS2pnumeric192 unique values
0 missing
MWC05numeric169 unique values
0 missing
Eig05_AEA.bo.numeric122 unique values
0 missing
SpMax2_Bh.p.numeric94 unique values
0 missing
SpMax7_Bh.m.numeric161 unique values
0 missing
CATS2D_01_LLnumeric30 unique values
0 missing
Eig07_EA.ed.numeric168 unique values
0 missing
SM02_AEA.ri.numeric168 unique values
0 missing
SM12_AEA.ed.numeric168 unique values
0 missing
SM03_AEA.ed.numeric145 unique values
0 missing
SM04_EAnumeric118 unique values
0 missing
ATS5inumeric216 unique values
0 missing
SM10_AEA.ed.numeric170 unique values
0 missing

62 properties

240
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
1.08
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.27
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
4.4
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.42
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
2.67
Mean standard deviation of attributes of the numeric type.
0.6
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
0.45
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.76
Minimum kurtosis among attributes of the numeric type.
0.38
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
7.89
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.94
Third quartile of kurtosis among attributes of the numeric type.
87.66
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
6.7
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-2.15
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.05
Third quartile of skewness among attributes of the numeric type.
2.64
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.18
First quartile of kurtosis among attributes of the numeric type.
1.52
Third quartile of standard deviation of attributes of the numeric type.
38.01
Maximum standard deviation of attributes of the numeric type.
Number of instances belonging to the least frequent class.
2.58
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
1.36
Mean kurtosis among attributes of the numeric type.
-0.32
First quartile of skewness among attributes of the numeric type.
8.05
Mean of means among attributes of the numeric type.
0.35
First quartile of standard deviation of attributes of the numeric type.
0.42
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task