Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2334

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2334

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2334 (TID: 10131), and it has 1979 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric983 unique values
0 missing
molecule_id (row identifier)nominal1979 unique values
0 missing
Eta_C_Anumeric662 unique values
0 missing
DLS_03numeric5 unique values
0 missing
nDBnumeric13 unique values
0 missing
SddssSnumeric327 unique values
0 missing
P_VSA_p_1numeric118 unique values
0 missing
nSO2Nnumeric3 unique values
0 missing
CATS2D_04_ANnumeric4 unique values
0 missing
ATSC4enumeric1081 unique values
0 missing
LLS_02numeric6 unique values
0 missing
ATS2snumeric1043 unique values
0 missing
ATSC2snumeric1927 unique values
0 missing
Eig01_AEA.dm.numeric675 unique values
0 missing
SpMax_AEA.dm.numeric675 unique values
0 missing
N.068numeric3 unique values
0 missing
CMC.80numeric2 unique values
0 missing
BACnumeric164 unique values
0 missing
nRCOOHnumeric4 unique values
0 missing
SpMax6_Bh.e.numeric741 unique values
0 missing
CATS2D_03_DNnumeric4 unique values
0 missing
NddssSnumeric3 unique values
0 missing
S.110numeric3 unique values
0 missing
Eig07_AEA.ri.numeric904 unique values
0 missing
Eig07_EA.ri.numeric915 unique values
0 missing
CATS2D_05_ANnumeric6 unique values
0 missing
Eig01_AEA.ed.numeric706 unique values
0 missing
SpMax_AEA.ed.numeric706 unique values
0 missing
SM11_EA.dm.numeric288 unique values
0 missing
S1Knumeric1242 unique values
0 missing
nRCOnumeric3 unique values
0 missing
SpDiam_AEA.dm.numeric689 unique values
0 missing
SM13_EA.dm.numeric283 unique values
0 missing
SM05_EA.dm.numeric285 unique values
0 missing
CATS2D_08_ANnumeric5 unique values
0 missing
P_VSA_MR_1numeric117 unique values
0 missing
Eig07_EAnumeric853 unique values
0 missing
SM15_AEA.bo.numeric853 unique values
0 missing
SM05_EA.bo.numeric979 unique values
0 missing
Infective.80numeric2 unique values
0 missing
O.058numeric12 unique values
0 missing
CATS2D_03_AAnumeric9 unique values
0 missing
SM14_EA.dm.numeric468 unique values
0 missing
Eig03_EA.dm.numeric189 unique values
0 missing
SM10_EA.dm.numeric542 unique values
0 missing
NsssNnumeric5 unique values
0 missing
SM09_EA.dm.numeric296 unique values
0 missing
Depressant.80numeric2 unique values
0 missing
ATSC2enumeric812 unique values
0 missing
Inflammat.80numeric2 unique values
0 missing
SM15_EA.dm.numeric272 unique values
0 missing
C.038numeric3 unique values
0 missing
CATS2D_06_NLnumeric6 unique values
0 missing
SpMax6_Bh.m.numeric804 unique values
0 missing
SAtotnumeric1778 unique values
0 missing
NdOnumeric12 unique values
0 missing
SM07_EA.dm.numeric301 unique values
0 missing
SM12_EA.dm.numeric501 unique values
0 missing
MAXDNnumeric1384 unique values
0 missing
Eig01_EA.ed.numeric974 unique values
0 missing
SM10_AEA.dm.numeric974 unique values
0 missing
SpMax_EA.ed.numeric974 unique values
0 missing
CATS2D_07_NLnumeric9 unique values
0 missing
CATS2D_03_ALnumeric23 unique values
0 missing
SM04_EA.ri.numeric993 unique values
0 missing
CATS2D_01_ANnumeric4 unique values
0 missing
CATS2D_01_DNnumeric4 unique values
0 missing
Eig08_AEA.ed.numeric940 unique values
0 missing
P_VSA_s_6numeric835 unique values
0 missing
ATSC3snumeric1933 unique values
0 missing
SM08_EA.dm.numeric588 unique values
0 missing
CATS2D_01_NLnumeric4 unique values
0 missing

62 properties

1979
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
77.43
Maximum kurtosis among attributes of the numeric type.
-0.91
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
3.38
Third quartile of kurtosis among attributes of the numeric type.
480.19
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.82
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.86
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
1.47
Third quartile of skewness among attributes of the numeric type.
5.74
Maximum skewness among attributes of the numeric type.
0.15
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.21
Third quartile of standard deviation of attributes of the numeric type.
154.43
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.79
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.42
First quartile of means among attributes of the numeric type.
2.43
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
19.45
Mean of means among attributes of the numeric type.
0.05
First quartile of skewness among attributes of the numeric type.
0.12
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.44
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.04
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.38
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.82
Mean skewness among attributes of the numeric type.
2.58
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
8.92
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.54
Second quartile (Median) of skewness among attributes of the numeric type.
0.55
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.99
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task