Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3025

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3025

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3025 (TID: 10186), and it has 190 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric177 unique values
0 missing
molecule_id (row identifier)nominal190 unique values
0 missing
CATS2D_02_DAnumeric8 unique values
0 missing
Eta_sh_ynumeric110 unique values
0 missing
Eta_sh_xnumeric65 unique values
0 missing
MAXDNnumeric176 unique values
0 missing
IVDEnumeric103 unique values
0 missing
Eig01_AEA.dm.numeric122 unique values
0 missing
SpMax_AEA.dm.numeric122 unique values
0 missing
N.numeric67 unique values
0 missing
X2Avnumeric112 unique values
0 missing
SpDiam_AEA.dm.numeric127 unique values
0 missing
nNnumeric8 unique values
0 missing
MATS2snumeric161 unique values
0 missing
SpMax1_Bh.s.numeric73 unique values
0 missing
SddssSnumeric72 unique values
0 missing
nSnumeric4 unique values
0 missing
NddssSnumeric3 unique values
0 missing
P_VSA_i_1numeric15 unique values
0 missing
MATS2enumeric149 unique values
0 missing
P_VSA_s_1numeric9 unique values
0 missing
P_VSA_i_4numeric57 unique values
0 missing
CATS2D_02_APnumeric6 unique values
0 missing
S.110numeric3 unique values
0 missing
BLInumeric152 unique values
0 missing
X1Avnumeric118 unique values
0 missing
Eig01_AEA.ed.numeric130 unique values
0 missing
SpMax_AEA.ed.numeric130 unique values
0 missing
JGI1numeric84 unique values
0 missing
C.numeric91 unique values
0 missing
CATS2D_00_DDnumeric4 unique values
0 missing
CATS2D_00_DPnumeric4 unique values
0 missing
CATS2D_00_PPnumeric4 unique values
0 missing
NsNH2numeric4 unique values
0 missing
SsNH2numeric83 unique values
0 missing
X3Avnumeric93 unique values
0 missing
N.069numeric4 unique values
0 missing
GATS1pnumeric152 unique values
0 missing
MATS1mnumeric127 unique values
0 missing
AACnumeric145 unique values
0 missing
IC0numeric145 unique values
0 missing
SpMax1_Bh.m.numeric112 unique values
0 missing
Minumeric71 unique values
0 missing
Eig01_AEA.bo.numeric131 unique values
0 missing
SpMax_AEA.bo.numeric131 unique values
0 missing
X5Avnumeric58 unique values
0 missing
nSO2Nnumeric3 unique values
0 missing
CATS2D_03_PLnumeric6 unique values
0 missing
JGTnumeric135 unique values
0 missing
P_VSA_e_3numeric60 unique values
0 missing
X4Avnumeric73 unique values
0 missing
Eta_B_Anumeric44 unique values
0 missing
P_VSA_LogP_2numeric49 unique values
0 missing
nCsp2numeric20 unique values
0 missing
ATSC2snumeric181 unique values
0 missing
CATS2D_04_PLnumeric6 unique values
0 missing
SssCH2numeric104 unique values
0 missing
SdOnumeric128 unique values
0 missing
SpMin1_Bh.v.numeric110 unique values
0 missing
GATS1enumeric143 unique values
0 missing
GATS2snumeric151 unique values
0 missing
Eig01_EA.bo.numeric123 unique values
0 missing
SM11_AEA.ri.numeric123 unique values
0 missing
SpMax_EA.bo.numeric123 unique values
0 missing
PDInumeric117 unique values
0 missing
SpMax2_Bh.s.numeric102 unique values
0 missing
GATS1mnumeric134 unique values
0 missing
NssNHnumeric5 unique values
0 missing
SssNHnumeric39 unique values
0 missing
NdOnumeric7 unique values
0 missing

62 properties

190
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
61.58
Maximum kurtosis among attributes of the numeric type.
-1.79
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
7.33
Third quartile of kurtosis among attributes of the numeric type.
55.3
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.52
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-4.39
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
1.44
Third quartile of skewness among attributes of the numeric type.
6.35
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.56
Third quartile of standard deviation of attributes of the numeric type.
53.37
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.48
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.49
First quartile of means among attributes of the numeric type.
5.24
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
4.88
Mean of means among attributes of the numeric type.
-0.67
First quartile of skewness among attributes of the numeric type.
0.02
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.25
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.37
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.88
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.48
Mean skewness among attributes of the numeric type.
1.13
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
3.85
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.93
Second quartile (Median) of skewness among attributes of the numeric type.
0.73
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.45
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task