Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2335

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2335

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2335 (TID: 10331), and it has 303 rows and 51 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

53 features

pXC50 (target)numeric217 unique values
0 missing
molecule_id (row identifier)nominal303 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b2numeric2 unique values
0 missing
FCFP4_1024b33numeric2 unique values
0 missing
FCFP4_1024b957numeric2 unique values
0 missing
FCFP4_1024b319numeric2 unique values
0 missing
FCFP4_1024b57numeric2 unique values
0 missing
FCFP4_1024b78numeric2 unique values
0 missing
FCFP4_1024b649numeric2 unique values
0 missing
FCFP4_1024b585numeric2 unique values
0 missing
FCFP4_1024b298numeric2 unique values
0 missing
FCFP4_1024b708numeric2 unique values
0 missing
FCFP4_1024b809numeric2 unique values
0 missing
FCFP4_1024b904numeric2 unique values
0 missing
FCFP4_1024b88numeric2 unique values
0 missing
FCFP4_1024b461numeric2 unique values
0 missing
FCFP4_1024b999numeric2 unique values
0 missing
FCFP4_1024b139numeric2 unique values
0 missing
FCFP4_1024b87numeric2 unique values
0 missing
FCFP4_1024b67numeric2 unique values
0 missing
FCFP4_1024b888numeric2 unique values
0 missing
FCFP4_1024b269numeric2 unique values
0 missing
FCFP4_1024b992numeric2 unique values
0 missing
FCFP4_1024b826numeric2 unique values
0 missing
FCFP4_1024b877numeric2 unique values
0 missing
FCFP4_1024b615numeric2 unique values
0 missing
FCFP4_1024b131numeric2 unique values
0 missing
FCFP4_1024b468numeric2 unique values
0 missing
FCFP4_1024b872numeric2 unique values
0 missing
FCFP4_1024b914numeric2 unique values
0 missing
FCFP4_1024b396numeric2 unique values
0 missing
FCFP4_1024b524numeric2 unique values
0 missing
FCFP4_1024b653numeric2 unique values
0 missing
FCFP4_1024b438numeric2 unique values
0 missing
FCFP4_1024b597numeric2 unique values
0 missing
FCFP4_1024b42numeric2 unique values
0 missing
FCFP4_1024b222numeric2 unique values
0 missing
FCFP4_1024b215numeric2 unique values
0 missing
FCFP4_1024b153numeric2 unique values
0 missing
FCFP4_1024b38numeric2 unique values
0 missing
FCFP4_1024b536numeric2 unique values
0 missing
FCFP4_1024b876numeric2 unique values
0 missing
FCFP4_1024b206numeric2 unique values
0 missing
FCFP4_1024b583numeric2 unique values
0 missing
FCFP4_1024b187numeric2 unique values
0 missing
FCFP4_1024b1006numeric2 unique values
0 missing
FCFP4_1024b1numeric1 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing
FCFP4_1024b1001numeric1 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing

62 properties

303
Number of instances (rows) of the dataset.
53
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
52
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
303
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
7
Third quartile of kurtosis among attributes of the numeric type.
7.19
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.37
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.11
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.7
Minimum skewness among attributes of the numeric type.
1.89
Percentage of nominal attributes.
2.99
Third quartile of skewness among attributes of the numeric type.
17.41
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.41
Third quartile of standard deviation of attributes of the numeric type.
1.37
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.06
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.08
First quartile of means among attributes of the numeric type.
11.96
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.39
Mean of means among attributes of the numeric type.
0.69
First quartile of skewness among attributes of the numeric type.
0.07
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.28
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.17
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.73
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2.18
Mean skewness among attributes of the numeric type.
0.15
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
0.35
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.02
Second quartile (Median) of skewness among attributes of the numeric type.
0.33
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-2.01
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task