Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3242

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3242

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3242 (TID: 12209), and it has 949 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric549 unique values
0 missing
molecule_id (row identifier)nominal949 unique values
0 missing
FCFP4_1024b492numeric2 unique values
0 missing
FCFP4_1024b4numeric2 unique values
0 missing
FCFP4_1024b357numeric2 unique values
0 missing
FCFP4_1024b63numeric2 unique values
0 missing
FCFP4_1024b524numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing
FCFP4_1024b453numeric2 unique values
0 missing
FCFP4_1024b451numeric2 unique values
0 missing
FCFP4_1024b698numeric2 unique values
0 missing
FCFP4_1024b283numeric2 unique values
0 missing
FCFP4_1024b54numeric2 unique values
0 missing
FCFP4_1024b48numeric2 unique values
0 missing
FCFP4_1024b821numeric2 unique values
0 missing
FCFP4_1024b884numeric2 unique values
0 missing
FCFP4_1024b45numeric2 unique values
0 missing
FCFP4_1024b352numeric2 unique values
0 missing
FCFP4_1024b341numeric2 unique values
0 missing
FCFP4_1024b286numeric2 unique values
0 missing
FCFP4_1024b592numeric2 unique values
0 missing
FCFP4_1024b152numeric2 unique values
0 missing
FCFP4_1024b652numeric2 unique values
0 missing
FCFP4_1024b505numeric2 unique values
0 missing
FCFP4_1024b414numeric2 unique values
0 missing
FCFP4_1024b36numeric2 unique values
0 missing
FCFP4_1024b203numeric2 unique values
0 missing
FCFP4_1024b345numeric2 unique values
0 missing
FCFP4_1024b557numeric2 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b747numeric2 unique values
0 missing
FCFP4_1024b651numeric2 unique values
0 missing
FCFP4_1024b161numeric2 unique values
0 missing
FCFP4_1024b545numeric2 unique values
0 missing
FCFP4_1024b823numeric2 unique values
0 missing
FCFP4_1024b103numeric2 unique values
0 missing
FCFP4_1024b360numeric2 unique values
0 missing
FCFP4_1024b889numeric2 unique values
0 missing
FCFP4_1024b35numeric2 unique values
0 missing
FCFP4_1024b83numeric2 unique values
0 missing
FCFP4_1024b678numeric2 unique values
0 missing
FCFP4_1024b707numeric2 unique values
0 missing
FCFP4_1024b538numeric2 unique values
0 missing
FCFP4_1024b108numeric2 unique values
0 missing
FCFP4_1024b180numeric2 unique values
0 missing
FCFP4_1024b61numeric2 unique values
0 missing
FCFP4_1024b173numeric2 unique values
0 missing
FCFP4_1024b623numeric2 unique values
0 missing
FCFP4_1024b826numeric2 unique values
0 missing
FCFP4_1024b164numeric2 unique values
0 missing
FCFP4_1024b298numeric2 unique values
0 missing
FCFP4_1024b118numeric2 unique values
0 missing
FCFP4_1024b908numeric2 unique values
0 missing
FCFP4_1024b971numeric2 unique values
0 missing
FCFP4_1024b804numeric2 unique values
0 missing
FCFP4_1024b955numeric2 unique values
0 missing
FCFP4_1024b468numeric2 unique values
0 missing
FCFP4_1024b424numeric2 unique values
0 missing
FCFP4_1024b300numeric2 unique values
0 missing
FCFP4_1024b18numeric2 unique values
0 missing
FCFP4_1024b714numeric2 unique values
0 missing
FCFP4_1024b355numeric2 unique values
0 missing
FCFP4_1024b708numeric2 unique values
0 missing
FCFP4_1024b904numeric2 unique values
0 missing
FCFP4_1024b128numeric2 unique values
0 missing
FCFP4_1024b809numeric2 unique values
0 missing
FCFP4_1024b78numeric2 unique values
0 missing
FCFP4_1024b474numeric2 unique values
0 missing
FCFP4_1024b487numeric2 unique values
0 missing
FCFP4_1024b336numeric2 unique values
0 missing
FCFP4_1024b2numeric2 unique values
0 missing
FCFP4_1024b614numeric2 unique values
0 missing
FCFP4_1024b75numeric2 unique values
0 missing
FCFP4_1024b888numeric2 unique values
0 missing
FCFP4_1024b271numeric2 unique values
0 missing
FCFP4_1024b409numeric2 unique values
0 missing
FCFP4_1024b429numeric2 unique values
0 missing
FCFP4_1024b38numeric2 unique values
0 missing
FCFP4_1024b766numeric2 unique values
0 missing
FCFP4_1024b485numeric2 unique values
0 missing
FCFP4_1024b669numeric2 unique values
0 missing
FCFP4_1024b699numeric2 unique values
0 missing
FCFP4_1024b506numeric2 unique values
0 missing
FCFP4_1024b187numeric2 unique values
0 missing
FCFP4_1024b249numeric2 unique values
0 missing
FCFP4_1024b553numeric2 unique values
0 missing
FCFP4_1024b758numeric2 unique values
0 missing
FCFP4_1024b530numeric2 unique values
0 missing
FCFP4_1024b321numeric2 unique values
0 missing
FCFP4_1024b869numeric2 unique values
0 missing
FCFP4_1024b900numeric2 unique values
0 missing
FCFP4_1024b281numeric2 unique values
0 missing
FCFP4_1024b521numeric2 unique values
0 missing
FCFP4_1024b694numeric2 unique values
0 missing
FCFP4_1024b985numeric2 unique values
0 missing
FCFP4_1024b1numeric2 unique values
0 missing
FCFP4_1024b285numeric2 unique values
0 missing
FCFP4_1024b457numeric2 unique values
0 missing
FCFP4_1024b493numeric2 unique values
0 missing
FCFP4_1024b727numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing

62 properties

949
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
30.81
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
5.36
Third quartile of skewness among attributes of the numeric type.
1.28
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
3.08
First quartile of kurtosis among attributes of the numeric type.
0.33
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.03
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
27.37
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.21
Mean of means among attributes of the numeric type.
2.14
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.18
First quartile of standard deviation of attributes of the numeric type.
0.15
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
9.3
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.11
Number of attributes divided by the number of instances.
3.62
Mean skewness among attributes of the numeric type.
0.08
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.27
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
3.07
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.95
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.26
Second quartile (Median) of standard deviation of attributes of the numeric type.
949
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
7.13
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
26.81
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.13
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-10.77
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task