Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3807

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3807

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3807 (TID: 10258), and it has 434 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric312 unique values
0 missing
molecule_id (row identifier)nominal434 unique values
0 missing
SM07_EA.bo.numeric313 unique values
0 missing
TPSA.Tot.numeric189 unique values
0 missing
SM08_EA.bo.numeric326 unique values
0 missing
ATS1mnumeric304 unique values
0 missing
SpMax2_Bh.p.numeric177 unique values
0 missing
ATSC3snumeric409 unique values
0 missing
TPSA.NO.numeric165 unique values
0 missing
ATSC3enumeric329 unique values
0 missing
SpMax3_Bh.m.numeric229 unique values
0 missing
ATSC2snumeric404 unique values
0 missing
ZM1Madnumeric345 unique values
0 missing
ZM2Vnumeric273 unique values
0 missing
nHetnumeric21 unique values
0 missing
SM04_EA.bo.numeric299 unique values
0 missing
MWnumeric349 unique values
0 missing
ZM2Pernumeric398 unique values
0 missing
X2solnumeric350 unique values
0 missing
Eig15_EAnumeric264 unique values
0 missing
SM09_AEA.dm.numeric264 unique values
0 missing
ZM2MulPernumeric398 unique values
0 missing
ATS2mnumeric299 unique values
0 missing
SpMax3_Bh.v.numeric234 unique values
0 missing
ZM1Pernumeric394 unique values
0 missing
Eig14_EA.ed.numeric282 unique values
0 missing
SM09_AEA.ri.numeric282 unique values
0 missing
Eig15_AEA.ri.numeric296 unique values
0 missing
Eig15_EA.ed.numeric272 unique values
0 missing
SM10_AEA.ri.numeric272 unique values
0 missing
SpMax2_Bh.m.numeric197 unique values
0 missing
P_VSA_s_5numeric27 unique values
0 missing
ZM2Kupnumeric378 unique values
0 missing
P_VSA_e_3numeric75 unique values
0 missing
Psi_i_snumeric317 unique values
0 missing
ATSC2enumeric301 unique values
0 missing
ZM1MulPernumeric396 unique values
0 missing
ZM1Vnumeric214 unique values
0 missing
X1solnumeric323 unique values
0 missing
P_VSA_i_4numeric84 unique values
0 missing
SpMax5_Bh.s.numeric193 unique values
0 missing
SpMax8_Bh.m.numeric296 unique values
0 missing
SpMax3_Bh.s.numeric121 unique values
0 missing
Psi_e_0numeric411 unique values
0 missing
Eig13_EA.ed.numeric271 unique values
0 missing
SM08_AEA.ri.numeric271 unique values
0 missing
ATSC1snumeric383 unique values
0 missing
Eig15_EA.ri.numeric299 unique values
0 missing
Eig14_EA.bo.numeric278 unique values
0 missing
Eig13_AEA.bo.numeric260 unique values
0 missing
ATS5mnumeric358 unique values
0 missing
Eig09_AEA.bo.numeric271 unique values
0 missing
nHAccnumeric18 unique values
0 missing
Eig12_EA.bo.numeric274 unique values
0 missing
X0numeric276 unique values
0 missing
ON0numeric161 unique values
0 missing
IDDMnumeric253 unique values
0 missing
nNnumeric7 unique values
0 missing
nSO2Nnumeric3 unique values
0 missing
SpAD_EA.bo.numeric376 unique values
0 missing
Eig13_EAnumeric252 unique values
0 missing
SM07_AEA.dm.numeric252 unique values
0 missing
Dznumeric197 unique values
0 missing
Eta_alphanumeric270 unique values
0 missing
GMTIVnumeric408 unique values
0 missing
SpMax4_Bh.s.numeric155 unique values
0 missing
Eig12_AEA.bo.numeric268 unique values
0 missing
Eig14_AEA.ri.numeric272 unique values
0 missing
Eig14_EAnumeric262 unique values
0 missing
Eig14_EA.ri.numeric282 unique values
0 missing

62 properties

434
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
3.12
Maximum skewness among attributes of the numeric type.
0.16
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.59
Third quartile of skewness among attributes of the numeric type.
49881.35
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.08
First quartile of kurtosis among attributes of the numeric type.
27.34
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.57
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
4.52
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
1128.37
Mean of means among attributes of the numeric type.
-1.17
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.7
First quartile of standard deviation of attributes of the numeric type.
0.37
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.96
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.16
Number of attributes divided by the number of instances.
-0.14
Mean skewness among attributes of the numeric type.
5.74
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
752.88
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.05
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.4
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.85
Second quartile (Median) of standard deviation of attributes of the numeric type.
97.71
Maximum kurtosis among attributes of the numeric type.
0.22
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
71579.86
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.1
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
56.45
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-7.54
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task