Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1977

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1977

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1977 (TID: 64), and it has 358 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric164 unique values
0 missing
molecule_id (row identifier)nominal358 unique values
0 missing
Eig04_EA.dm.numeric30 unique values
0 missing
NdOnumeric5 unique values
0 missing
CATS2D_01_AAnumeric3 unique values
0 missing
N.076numeric2 unique values
0 missing
nArNO2numeric2 unique values
0 missing
NddsNnumeric2 unique values
0 missing
O.061numeric2 unique values
0 missing
nROHnumeric5 unique values
0 missing
O.056numeric5 unique values
0 missing
NsOHnumeric5 unique values
0 missing
O.058numeric4 unique values
0 missing
C.040numeric3 unique values
0 missing
nHetnumeric12 unique values
0 missing
CATS2D_04_AAnumeric4 unique values
0 missing
C.004numeric4 unique values
0 missing
nCqnumeric4 unique values
0 missing
CATS2D_02_AAnumeric6 unique values
0 missing
MATS1snumeric131 unique values
0 missing
nOHsnumeric4 unique values
0 missing
NssssCnumeric4 unique values
0 missing
SpMin8_Bh.s.numeric148 unique values
0 missing
CIC1numeric230 unique values
0 missing
C.016numeric7 unique values
0 missing
NdsCHnumeric7 unique values
0 missing
nR.Csnumeric7 unique values
0 missing
NaaCHnumeric16 unique values
0 missing
NddssSnumeric3 unique values
0 missing
S.110numeric3 unique values
0 missing
SdsCHnumeric88 unique values
0 missing
nBnznumeric5 unique values
0 missing
Menumeric58 unique values
0 missing
nCrqnumeric3 unique values
0 missing
nSnumeric4 unique values
0 missing
C.005numeric4 unique values
0 missing
MATS1inumeric155 unique values
0 missing
GATS2snumeric193 unique values
0 missing
C.026numeric5 unique values
0 missing
H.050numeric6 unique values
0 missing
nHDonnumeric6 unique values
0 missing
P_VSA_MR_3numeric12 unique values
0 missing
GATS5pnumeric198 unique values
0 missing
IC4numeric212 unique values
0 missing
Eig05_EA.dm.numeric28 unique values
0 missing
nArCONHRnumeric2 unique values
0 missing
GATS3mnumeric189 unique values
0 missing
SM15_AEA.ed.numeric168 unique values
0 missing
C.015numeric3 unique values
0 missing
NdCH2numeric3 unique values
0 missing
nR.Cpnumeric3 unique values
0 missing
Hypertens.80numeric2 unique values
0 missing
nNnumeric6 unique values
0 missing
nRCONR2numeric2 unique values
0 missing
CATS2D_09_AAnumeric5 unique values
0 missing
SM14_AEA.ed.numeric172 unique values
0 missing
SM08_EA.ed.numeric171 unique values
0 missing
CATS2D_07_DAnumeric4 unique values
0 missing
ATSC5snumeric273 unique values
0 missing
DLS_05numeric3 unique values
0 missing
GATS2enumeric203 unique values
0 missing
SM13_AEA.ed.numeric169 unique values
0 missing
SM12_AEA.ed.numeric176 unique values
0 missing
O.numeric79 unique values
0 missing
SddsNnumeric66 unique values
0 missing
SM11_AEA.ed.numeric183 unique values
0 missing
SM10_AEA.ed.numeric175 unique values
0 missing

62 properties

358
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
2.07
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.87
Third quartile of skewness among attributes of the numeric type.
82.19
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.13
First quartile of kurtosis among attributes of the numeric type.
1.22
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.5
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.49
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.85
Mean of means among attributes of the numeric type.
-0.12
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.45
First quartile of standard deviation of attributes of the numeric type.
0.56
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.67
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.19
Number of attributes divided by the number of instances.
0.41
Mean skewness among attributes of the numeric type.
0.99
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
2.88
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.54
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.78
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.82
Second quartile (Median) of standard deviation of attributes of the numeric type.
4.24
Maximum kurtosis among attributes of the numeric type.
-0.23
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
129.82
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-0.2
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
2.22
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.06
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task