Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4077

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4077

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4077 (TID: 12708), and it has 469 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric311 unique values
0 missing
molecule_id (row identifier)nominal469 unique values
0 missing
D.Dtr09numeric291 unique values
0 missing
nBMnumeric51 unique values
0 missing
Ucnumeric51 unique values
0 missing
CATS2D_06_ALnumeric37 unique values
0 missing
P_VSA_LogP_7numeric96 unique values
0 missing
DLS_01numeric4 unique values
0 missing
DLS_03numeric6 unique values
0 missing
DLS_06numeric6 unique values
0 missing
DLS_consnumeric41 unique values
0 missing
DLS_07numeric3 unique values
0 missing
P_VSA_e_1numeric69 unique values
0 missing
P_VSA_m_1numeric69 unique values
0 missing
P_VSA_s_2numeric72 unique values
0 missing
P_VSA_v_1numeric69 unique values
0 missing
CATS2D_06_DPnumeric5 unique values
0 missing
CATS2D_08_APnumeric10 unique values
0 missing
CATS2D_08_DPnumeric9 unique values
0 missing
S3Knumeric363 unique values
0 missing
CATS2D_02_APnumeric9 unique values
0 missing
Eig12_EA.dm.numeric47 unique values
0 missing
Eig13_EA.dm.numeric40 unique values
0 missing
H.049numeric4 unique values
0 missing
DLS_04numeric7 unique values
0 missing
CATS2D_07_DPnumeric10 unique values
0 missing
nImidazolesnumeric3 unique values
0 missing
CATS2D_08_ALnumeric43 unique values
0 missing
Eig10_EA.dm.numeric56 unique values
0 missing
P_VSA_MR_5numeric248 unique values
0 missing
N.075numeric4 unique values
0 missing
NaaNnumeric4 unique values
0 missing
VARnumeric219 unique values
0 missing
Eig14_EA.dm.numeric45 unique values
0 missing
CATS2D_00_DDnumeric10 unique values
0 missing
CATS2D_00_DPnumeric10 unique values
0 missing
CATS2D_00_PPnumeric10 unique values
0 missing
NsNH2numeric10 unique values
0 missing
Eig15_EA.dm.numeric42 unique values
0 missing
SssNHnumeric261 unique values
0 missing
P_VSA_LogP_5numeric148 unique values
0 missing
SRW09numeric32 unique values
0 missing
C.028numeric3 unique values
0 missing
CATS2D_08_DLnumeric41 unique values
0 missing
SpMax7_Bh.m.numeric292 unique values
0 missing
C.042numeric3 unique values
0 missing
nRCONH2numeric4 unique values
0 missing
P_VSA_m_2numeric360 unique values
0 missing
SpMaxA_EA.ed.numeric174 unique values
0 missing
SpMax7_Bh.v.numeric313 unique values
0 missing
MATS1enumeric146 unique values
0 missing
P_VSA_e_3numeric109 unique values
0 missing
IC1numeric310 unique values
0 missing
SRW07numeric18 unique values
0 missing
SpMAD_EA.dm.numeric227 unique values
0 missing
P_VSA_i_4numeric117 unique values
0 missing
ATS1snumeric338 unique values
0 missing
N.073numeric4 unique values
0 missing
NaaNHnumeric4 unique values
0 missing
AECCnumeric351 unique values
0 missing
AACnumeric228 unique values
0 missing
IC0numeric228 unique values
0 missing
CENTnumeric359 unique values
0 missing
HNarnumeric140 unique values
0 missing
ATS7mnumeric380 unique values
0 missing
MATS5snumeric224 unique values
0 missing
CIC1numeric336 unique values
0 missing
ATS3snumeric365 unique values
0 missing

62 properties

469
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
10.06
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2
Third quartile of skewness among attributes of the numeric type.
51371.27
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.74
First quartile of kurtosis among attributes of the numeric type.
10.66
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.47
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
6.59
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
313.77
Mean of means among attributes of the numeric type.
0.48
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.46
First quartile of standard deviation of attributes of the numeric type.
-0.12
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.46
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.14
Number of attributes divided by the number of instances.
1.29
Mean skewness among attributes of the numeric type.
2.4
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
810.93
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.99
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.57
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.72
Second quartile (Median) of standard deviation of attributes of the numeric type.
130.2
Maximum kurtosis among attributes of the numeric type.
-0.09
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
16686.31
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
8.83
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
13.28
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.52
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task