Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2181

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2181

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2181 (TID: 10613), and it has 247 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric73 unique values
0 missing
molecule_id (row identifier)nominal247 unique values
0 missing
X5Avnumeric53 unique values
0 missing
nDBnumeric4 unique values
0 missing
C.008numeric4 unique values
0 missing
JGI7numeric10 unique values
0 missing
X3Avnumeric85 unique values
0 missing
Chi1_EA.dm.numeric183 unique values
0 missing
Chi0_EA.dm.numeric168 unique values
0 missing
MATS2inumeric140 unique values
0 missing
Eig09_EA.ri.numeric148 unique values
0 missing
NsCH3numeric7 unique values
0 missing
P_VSA_LogP_1numeric17 unique values
0 missing
SsCH3numeric149 unique values
0 missing
Eig02_EA.dm.numeric24 unique values
0 missing
PW5numeric45 unique values
0 missing
X4Avnumeric66 unique values
0 missing
CATS2D_05_NLnumeric4 unique values
0 missing
Eig08_EA.ri.numeric170 unique values
0 missing
C.016numeric3 unique values
0 missing
NdsCHnumeric3 unique values
0 missing
nR.Csnumeric3 unique values
0 missing
DECCnumeric123 unique values
0 missing
P_VSA_s_6numeric71 unique values
0 missing
Eig09_AEA.bo.numeric108 unique values
0 missing
JGI4numeric29 unique values
0 missing
SpMin3_Bh.m.numeric113 unique values
0 missing
MATS8mnumeric158 unique values
0 missing
ATS5vnumeric199 unique values
0 missing
TPSA.Tot.numeric76 unique values
0 missing
GGI5numeric116 unique values
0 missing
BLInumeric156 unique values
0 missing
X1Avnumeric107 unique values
0 missing
P_VSA_i_1numeric10 unique values
0 missing
P_VSA_MR_8numeric9 unique values
0 missing
NsssNnumeric3 unique values
0 missing
SsssNnumeric86 unique values
0 missing
CATS2D_04_ALnumeric17 unique values
0 missing
nCrsnumeric8 unique values
0 missing
CATS2D_06_AAnumeric5 unique values
0 missing
MATS8pnumeric154 unique values
0 missing
nSnumeric4 unique values
0 missing
GATS2vnumeric159 unique values
0 missing
SpMin2_Bh.p.numeric124 unique values
0 missing
SdssCnumeric199 unique values
0 missing
nHMnumeric6 unique values
0 missing
P_VSA_m_4numeric19 unique values
0 missing
SpMin3_Bh.p.numeric119 unique values
0 missing
SpMin3_Bh.v.numeric129 unique values
0 missing
GGI6numeric107 unique values
0 missing
SssOnumeric141 unique values
0 missing
SM12_EA.ri.numeric210 unique values
0 missing
CATS2D_06_ANnumeric3 unique values
0 missing
P_VSA_MR_6numeric136 unique values
0 missing
MATS2pnumeric147 unique values
0 missing
NssOnumeric4 unique values
0 missing
Eig02_AEA.bo.numeric78 unique values
0 missing
SM14_EA.ri.numeric213 unique values
0 missing
SM15_EA.ri.numeric216 unique values
0 missing
X5Anumeric27 unique values
0 missing
nArORnumeric4 unique values
0 missing
BIC3numeric93 unique values
0 missing
Eta_beta_Anumeric137 unique values
0 missing
SpMAD_EA.bo.numeric109 unique values
0 missing

62 properties

247
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
-0.46
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.26
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.34
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.38
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
4.19
Mean standard deviation of attributes of the numeric type.
0.43
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
0.52
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.34
Minimum kurtosis among attributes of the numeric type.
-0.89
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
5.39
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.07
Third quartile of kurtosis among attributes of the numeric type.
146.49
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
4.16
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-2.07
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.73
Third quartile of skewness among attributes of the numeric type.
2.34
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.77
First quartile of kurtosis among attributes of the numeric type.
1.21
Third quartile of standard deviation of attributes of the numeric type.
51.4
Maximum standard deviation of attributes of the numeric type.
Number of instances belonging to the least frequent class.
0.64
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.06
Mean kurtosis among attributes of the numeric type.
-0.04
First quartile of skewness among attributes of the numeric type.
9.27
Mean of means among attributes of the numeric type.
0.08
First quartile of standard deviation of attributes of the numeric type.
0.59
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task