Data
sponge

sponge

deactivated ARFF Publicly available Visibility: public Uploaded 26-08-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Iosune Uriz and Marta Domingo. Donated by Javier Bejar and Ulises Cortes. Source: [UCI](https://archive.ics.uci.edu/ml/datasets/Sponge) Please cite: [UCI](https://archive.ics.uci.edu/ml/citation_policy.html) Marine Sponges These are atlantic-mediterranean marine sponges that belong to O.Hadromerida (Demospongiae.Porifera). ### Attribute Information 27 attributes are non-numeric and nominal. 15 attributes are boolean and take the values (NO SI). 3 attributes (7, 28, 37) are numeric and take natural numbers. ``` 1 A.CAPAS_DEL_CORTEX (1_CAPA 2_CAPAS 3_CAPAS SIN_CORTEX) 2 A.CAPA_INTERNA_DEL_CORTEX (BANDAS_DE_ESPICULAS_CRUZADAS MICROSCLERAS PERPENDICULAR SIN_CAPA_INTERNA_DEL_CORTEX TANGENCIAL TANGENCIAL_Y_PERPENDICULAR) 3 A.CORTEX (NO SI) 4 A.CORTEX_FIBROSO (NO SI SIN_CORTEX) 5 A.CORTEX_SOLO_DE_ESPICULAS_TANGENCIALES (NO SI SIN_CORTEX) 6 A.CUERPOS_EXTRANOS_EN_EL_CORTEX (NO SI SIN_CORTEX) 7 A.GROSOR_DEL_CORTEX (0 4) 8 A.HACES_DE_ESPICULAS_PRINCIPALES_EN_POMPON_EN_EL_CORTEX (NO SI) 9 A.TILOSTILOS_ADICIONALES_COANOSOMA (ECTOSOMICOS_DISPERSOS ECTOSOMICOS_EN_RAMILLETES INTERMEDIARIOS INTERMEDIARIOS_Y_ECTOSOMICOS SIN_TILOSTILOS_ADICIONALES) 10 B.NUMERO_DE_TIPOS_DE_MEGASCLERAS (1_TIPO 2_TIPOS 3_TIPOS) 11 C.TIPO_ESPICULA_PRINCIPAL_DIACTINA_TUBERCULADA (NO SI) 12 C.TIPO_ESPICULA_PRINCIPAL_ESTILO (NO SI) 13 C.TIPO_ESPICULA_PRINCIPAL_ESTILOS_2_TAMANOS (NO SI) 14 C.TIPO_ESPICULA_PRINCIPAL_ESTILO_TILOSTILO (NO SI) 15 C.TIPO_ESPICULA_PRINCIPAL_ESTRONGILOXA (NO SI) 16 C.TIPO_ESPICULA_PRINCIPAL_OXAS (NO SI) 17 C.TIPO_ESPICULA_PRINCIPAL_TILOSTILO (NO SI) 18 D.ESPICULA_PRINCIPAL_ESTILO (FUSIFORME NORMAL POLITILOTA SIN_ESPICULA_PRINCIPAL_ESTILO) 19 D.ESPICULA_PRINCIPAL_TILOSTILO (FLEXUOSA FUSIFORME NORMAL POLITILOTA SIN_ESPICULA_PRINCIPAL_TILOSTILO_) 20 D.FORMA_BASE_TILOSTILO_PRINCIPAL (POMO SIN_TILOSTILOS SUBESFERICA_ALARGADA_OVOIDE TRILOBULADA) 21 E.DISPOSICION_MEGASCLERAS_ECTOSOMICAS_EN_EL_ECTOSOMA (EMPALIZADA RAMILLETES SIN_MEGASCLERAS_ECTOSOMICAS TANGENCIALES) 22 E.FORMA_BASE_TILOSTILO_ECTOSOMICO (SIN_TILOSTILO_ECTOSOMICO SUBESFERICA_ALARGADA_OVOIDE TRILOBULADA_CON_VESICULA_AXIAL) 23 E.FORMA_MEGASCLERA_ECTOSOMICA (CURVADA RECTA_FUSIFORME RECTA_NO_FUSIFORME SIN_MEGASCLERA_ECTOSOMICA) 24 E.TIPO_MEGASCLERA_ECTOSOMICA (ESTILO ESTILO_TILOSTILO OXAS_ESTRONGILOXAS SIN_MEGASCLERA_ECTOSOMICA TILOSTILO) 25 F.TIPO_DE_EXOSTILO (ANATRIENAS CLADOTILOSTILOS ESFEROTILOS SIN_EXOSTILOS TILOSTILOS_ESPINOSOS_EN_LA_PUNTA TILOSTILO_LISO) 26 G.FORMA_MEGASCLERA_INTERMEDIARIA (FUSIFORME NORMAL POLITILOTA SIN_MEGASCLERA_INTERMEDIARIA) 27 G.TIPO_MEGASCLERA_INTERMEDIARIA (ESTILO ESTILO_TILOSTILO SIN_MEGASCLERA_INTERMEDIARIA TILOSTILO) 28 H.LONGITUD_MEGASCLERAS (0 3) 29 I.MICROSCLERAS (NO SI) 30 I.TIPO_MICROSCLERA (ASTER MICROESTILOS_Y_MICROXAS MICROESTRONGILOS_CENTROTILOTES SIN_MICROSCLERAS TRICODRAGMA) 31 J.ASTER (NO SI) 32 J.DIAMETRO_ESFERASTER (|10_12| |20_25| |27_44| |40_110| |5_6_Y_15_35| SIN_ESFERASTER) 33 J.TIPO_DE_ASTER (ANFIASTER DIPLASTER ESFERASTER ESPIRASTER QUIASTER QUIASTER_Y_ESFERASTER SIN_ASTER) 34 J.TIPO_DE_DIPLASTER (CON_ACTINAS_COMPLEJAS CON_ACTINAS_SIMPLES SIN_DIPLASTERES) 35 J.TIPO_DE_ESFERASTER (OXIESFERASTER OXIESFERASTER_Y_TILOESFERASTER SIN_ESFERASTER) 36 K.FORMA_FINAL (DE_CONO_INVERTIDO DE_REVESTIMIENTO GLOBULOSA HEMISFERICA INCRUSTANTE MASIVO_IRREGULAR MAZAS_PEDUNCULADAS_1/PEDUNCULO MAZAS_PEDUNCULADAS_VARIAS/PEDUNCULO RAMIFICADA) 37 L.NUMERO_DE_PAPILAS (0 4) 38 L.PAPILAS (NO SI) 39 M.COLOR (AMARILLO_PALIDO AZUL_O_ANARANJADO_INTENSOS OTROS) 40 N.SUPERFICIE (ATERCIOPELADA CON_AREAS_POLIGONALES_ABULTADAS FRANJA_BASAL_DE_ESPICULAS_EN_FLECO HISPIDEZ_MAYOR_HACIA_LA_BASE LISA RUGOSA SOLO_PAPILAS_LISAS TOTALMENTE_HISPIDA) 41 O.DISPOSICION_ESPICULAR_ESQUELETO (AXIAL CONFUSA HYMEDESMOIDE PLUMOSA RADIAL RADIAL_EN_PERIFERIA REDUCIDO) 42 P.ALOJA_CANGREJO_ERMITANO (NO SI) 43 P.PERFORANTE (NO SI) 44 P.PSEUDORAICES (NO SI) 45 P.SUSTRATO (AMBOS BLANDO DURO) ``` ### Class Information These are the classes induced by our conceptual clustering algorithm: ``` -- Class 1: - Objects (6 sponges): TYLEXOCLADUS_JOUBINI TRACHYTELEIA_STEPHENSI TENTORIUM_SEMISUBERITES TENTORIUM_PAPILLATUS SUBERITES_CAMINATUS SPINULARIA_SPINULARIA AAPTOS_AAPTOS -- Class 2: - Objects (10 sponges): SPIRASTRELLA_MINAX SPIRASTRELLA_CUNCTATRIX LAXOSUBERITES_ECTYONIMUS DIPLASTRELLA_ORNATA DIPLASTRELLA_BISTELLATA CLIONA_SCHMIDTI CLIONA_LABYRINTHICA CLIONA_CELATA CLIONA_CARTERI ALECTONA_MILLARI -- Class 3: - Objects (1 sponges): CLIONA_VIRIDIS -- Class 4: - Objects (16 sponges): TERPIOS_FUGAX SUBERITES_GIBBOSICEPS SUBERITES_CARNOSUS_V.TYPICUS SUBERITES_CARNOSUS_V.RAMOSUS SUBERITES_CARNOSUS_V.INCRUSTANS RHIZAXINELLA_UNISETA RHIZAXINELLA_PYRIFERA RHIZAXINELLA_ELONGATA RHIZAXINELLA_BISETA PSEUDOSUBERITES_SULFUREUS PSEUDOSUBERITES_HYALINUS PROSUBERITES_RUGOSUS PROSUBERITES_LONGISPINA PROSUBERITES_EPIPHYTUM LAXOSUBERITES_RUGOSUS LAXOSUBERITES_FERRERHERNANDEZI -- Class 5: - Objects (2 sponges): STYLOCORDYLA_BOREALIS OXYCORDYLA_PELLITA -- Class 6: - Objects (16 sponges): SPHAEROTYLUS_CAPITATUS PROTELEIA_SOLLASI POLYMASTIA_UBERRIMA POLYMASTIA_TENAX POLYMASTIA_SPINULA POLYMASTIA_ROBUSTA POLYMASTIA_RADIOSA POLYMASTIA_POLYTYLOTA POLYMASTIA_MAMMILLARIS POLYMASTIA_LITTORALIS POLYMASTIA_INVAGINATA POLYMASTIA_INFLATA POLYMASTIA_HIRSUTA POLYMASTIA_CORTICATA POLYMASTIA_CONIGERA POLYMASTIA_AGGLUTINARIS -- Class 7: - Objects (7 sponges): SPHAEROTYLUS_ANTARCTICUS POLYMASTIA_TISSIERI POLYMASTIA_MARTAE POLYMASTIA_INFRAPILOSA POLYMASTIA_GRIMALDI POLYMASTIA_FUSCA POLYMASTIA_ECTOFIBROSA -- Class 8: - Objects (6 sponges): WEBERELLA_VERRUCOSA WEBERELLA_BURSA RIDLEYA_OVIFORMIS QUASILINA_RICHARDII QUASILINA_INTERMEDIA QUASILINA_BREVIS -- Class 9: - Objects (2 sponges): SUBERITES_FICUS SUBERITES_DOMUNCULA -- Class 10: - Objects (2 sponges): TETHYA_CITRINA TETHYA_AURANTIUM -- Class 11: - Objects (5 sponges): TIMEA_UNISTELLATA TIMEA_STELLATA TIMEA_MIXTA TIMEA_HALLEZI TIMEA_CHONDRILLOIDES -- Class 12: - Objects (2 sponges): TRICHOSTEMA_SARSI TRICHOSTEMA_HEMISPHAERICUM ```

45 features

P.SUSTRATO (target)nominal3 unique values
0 missing
Name (ignore)nominal76 unique values
0 missing
A.CAPAS_DEL_CORTEXnominal4 unique values
0 missing
A.CAPA_INTERNA_DEL_CORTEXnominal6 unique values
0 missing
A.CORTEXnominal2 unique values
0 missing
A.CORTEX_FIBROSOnominal3 unique values
0 missing
A.CORTEX_SOLO_DE_ESPICULAS_TANGENCIALESnominal3 unique values
0 missing
A.CUERPOS_EXTRANOS_EN_EL_CORTEXnominal3 unique values
0 missing
A.GROSOR_DEL_CORTEXnominal5 unique values
0 missing
A.HACES_DE_ESPICULAS_PRINCIPALES_EN_POMPON_EN_EL_CORTEXnominal2 unique values
0 missing
A.TILOSTILOS_ADICIONALES_COANOSOMAnominal5 unique values
0 missing
B.NUMERO_DE_TIPOS_DE_MEGASCLERASnominal4 unique values
0 missing
C.TIPO_ESPICULA_PRINCIPAL_DIACTINA_TUBERCULADAnominal2 unique values
0 missing
C.TIPO_ESPICULA_PRINCIPAL_ESTILOnominal2 unique values
0 missing
C.TIPO_ESPICULA_PRINCIPAL_ESTILOS_2_TAMANOSnominal2 unique values
0 missing
C.TIPO_ESPICULA_PRINCIPAL_ESTILO_TILOSTILOnominal2 unique values
0 missing
C.TIPO_ESPICULA_PRINCIPAL_ESTRONGILOXAnominal2 unique values
0 missing
C.TIPO_ESPICULA_PRINCIPAL_OXASnominal2 unique values
0 missing
C.TIPO_ESPICULA_PRINCIPAL_TILOSTILOnominal2 unique values
0 missing
D.ESPICULA_PRINCIPAL_ESTILOnominal4 unique values
0 missing
D.ESPICULA_PRINCIPAL_TILOSTILOnominal4 unique values
0 missing
D.FORMA_BASE_TILOSTILO_PRINCIPALnominal4 unique values
0 missing
E.DISPOSICION_MEGASCLERAS_ECTOSOMICAS_EN_EL_ECTOSOMAnominal4 unique values
0 missing
E.FORMA_BASE_TILOSTILO_ECTOSOMICOnominal3 unique values
0 missing
E.FORMA_MEGASCLERA_ECTOSOMICAnominal4 unique values
0 missing
E.TIPO_MEGASCLERA_ECTOSOMICAnominal5 unique values
0 missing
F.TIPO_DE_EXOSTILOnominal6 unique values
0 missing
G.FORMA_MEGASCLERA_INTERMEDIARIAnominal4 unique values
0 missing
G.TIPO_MEGASCLERA_INTERMEDIARIAnominal4 unique values
0 missing
H.LONGITUD_MEGASCLERASnominal4 unique values
0 missing
I.MICROSCLERASnominal2 unique values
0 missing
I.TIPO_MICROSCLERAnominal5 unique values
0 missing
J.ASTERnominal2 unique values
0 missing
J.DIAMETRO_ESFERASTERnominal6 unique values
0 missing
J.TIPO_DE_ASTERnominal7 unique values
0 missing
J.TIPO_DE_DIPLASTERnominal3 unique values
0 missing
J.TIPO_DE_ESFERASTERnominal3 unique values
0 missing
K.FORMA_FINALnominal9 unique values
0 missing
L.NUMERO_DE_PAPILASnominal5 unique values
0 missing
L.PAPILASnominal2 unique values
0 missing
M.COLORnominal3 unique values
22 missing
N.SUPERFICIEnominal8 unique values
0 missing
O.DISPOSICION_ESPICULAR_ESQUELETOnominal7 unique values
0 missing
P.ALOJA_CANGREJO_ERMITANOnominal2 unique values
0 missing
P.PERFORANTEnominal2 unique values
0 missing
P.PSEUDORAICESnominal2 unique values
0 missing

107 properties

76
Number of instances (rows) of the dataset.
45
Number of attributes (columns) of the dataset.
3
Number of distinct values of the target attribute (if it is nominal).
22
Number of missing values in the dataset.
22
Number of instances with at least one value missing.
0
Number of numeric attributes.
45
Number of nominal attributes.
Second quartile (Median) of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
33.33
Percentage of binary attributes.
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.59
Number of attributes divided by the number of instances.
0.27
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
28.95
Percentage of instances having missing values.
1.61
Third quartile of entropy among attributes.
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
7.41
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
9
The maximum number of distinct values among attributes of the nominal type.
Minimum skewness among attributes of the numeric type.
0.64
Percentage of missing values.
Third quartile of kurtosis among attributes of the numeric type.
0.91
Average class difference between consecutive instances.
0.27
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum skewness among attributes of the numeric type.
Minimum standard deviation of attributes of the numeric type.
0
Percentage of numeric attributes.
Third quartile of means among attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.08
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum standard deviation of attributes of the numeric type.
3.95
Percentage of instances belonging to the least frequent class.
100
Percentage of nominal attributes.
0.07
Third quartile of mutual information between the nominal attributes and the target attribute.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.12
Average entropy of the attributes.
3
Number of instances belonging to the least frequent class.
0.53
First quartile of entropy among attributes.
Third quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.27
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean kurtosis among attributes of the numeric type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of kurtosis among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.08
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean of means among attributes of the numeric type.
0.05
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of means among attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.08
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.06
Average mutual information between the nominal attributes and the target attribute.
0.48
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.02
First quartile of mutual information between the nominal attributes and the target attribute.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.27
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
16.33
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
15
Number of binary attributes.
First quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1.79
Standard deviation of the number of distinct values among attributes of the nominal type.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
3.73
Average number of distinct values among the attributes of the nominal type.
First quartile of standard deviation of attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.08
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean skewness among attributes of the numeric type.
1.14
Second quartile (Median) of entropy among attributes.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
92.11
Percentage of instances belonging to the most frequent class.
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.48
Entropy of the target attribute values.
0.52
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
70
Number of instances belonging to the most frequent class.
0.1
Minimal entropy among attributes.
Second quartile (Median) of means among attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
2.67
Maximum entropy among attributes.
Minimum kurtosis among attributes of the numeric type.
0.05
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.08
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum kurtosis among attributes of the numeric type.
Minimum of means among attributes of the numeric type.

15 tasks

1 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: P.SUSTRATO
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: P.SUSTRATO
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: P.SUSTRATO
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: P.SUSTRATO
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task