Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2096911

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2096911

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2096911 (TID: 104848), and it has 218 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric80 unique values
0 missing
molecule_id (row identifier)nominal218 unique values
0 missing
FCFP4_1024b360numeric2 unique values
0 missing
FCFP4_1024b78numeric2 unique values
0 missing
FCFP4_1024b490numeric2 unique values
0 missing
FCFP4_1024b26numeric2 unique values
0 missing
FCFP4_1024b412numeric2 unique values
0 missing
FCFP4_1024b68numeric2 unique values
0 missing
FCFP4_1024b797numeric2 unique values
0 missing
FCFP4_1024b820numeric2 unique values
0 missing
FCFP4_1024b87numeric2 unique values
0 missing
FCFP4_1024b118numeric2 unique values
0 missing
FCFP4_1024b986numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b185numeric2 unique values
0 missing
FCFP4_1024b182numeric2 unique values
0 missing
FCFP4_1024b1010numeric2 unique values
0 missing
FCFP4_1024b300numeric2 unique values
0 missing
FCFP4_1024b634numeric2 unique values
0 missing
FCFP4_1024b574numeric2 unique values
0 missing
FCFP4_1024b698numeric2 unique values
0 missing
FCFP4_1024b884numeric2 unique values
0 missing
FCFP4_1024b133numeric2 unique values
0 missing
FCFP4_1024b937numeric2 unique values
0 missing
FCFP4_1024b376numeric2 unique values
0 missing
FCFP4_1024b888numeric2 unique values
0 missing
FCFP4_1024b630numeric2 unique values
0 missing
FCFP4_1024b466numeric2 unique values
0 missing
FCFP4_1024b187numeric2 unique values
0 missing
FCFP4_1024b714numeric2 unique values
0 missing
FCFP4_1024b256numeric2 unique values
0 missing
FCFP4_1024b983numeric2 unique values
0 missing
FCFP4_1024b65numeric2 unique values
0 missing
FCFP4_1024b676numeric2 unique values
0 missing
FCFP4_1024b668numeric2 unique values
0 missing
FCFP4_1024b644numeric2 unique values
0 missing
FCFP4_1024b37numeric2 unique values
0 missing
FCFP4_1024b240numeric2 unique values
0 missing
FCFP4_1024b423numeric2 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b478numeric2 unique values
0 missing
FCFP4_1024b501numeric2 unique values
0 missing
FCFP4_1024b524numeric2 unique values
0 missing
FCFP4_1024b686numeric2 unique values
0 missing
FCFP4_1024b720numeric2 unique values
0 missing
FCFP4_1024b843numeric2 unique values
0 missing
FCFP4_1024b459numeric2 unique values
0 missing
FCFP4_1024b768numeric2 unique values
0 missing
FCFP4_1024b908numeric2 unique values
0 missing
FCFP4_1024b135numeric2 unique values
0 missing
FCFP4_1024b877numeric2 unique values
0 missing
FCFP4_1024b365numeric2 unique values
0 missing
FCFP4_1024b246numeric2 unique values
0 missing
FCFP4_1024b965numeric2 unique values
0 missing
FCFP4_1024b2numeric2 unique values
0 missing
FCFP4_1024b829numeric2 unique values
0 missing
FCFP4_1024b152numeric2 unique values
0 missing
FCFP4_1024b297numeric2 unique values
0 missing
FCFP4_1024b957numeric2 unique values
0 missing
FCFP4_1024b69numeric2 unique values
0 missing
FCFP4_1024b108numeric2 unique values
0 missing
FCFP4_1024b49numeric2 unique values
0 missing
FCFP4_1024b693numeric2 unique values
0 missing
FCFP4_1024b947numeric2 unique values
0 missing
FCFP4_1024b557numeric2 unique values
0 missing
FCFP4_1024b208numeric2 unique values
0 missing
FCFP4_1024b942numeric2 unique values
0 missing
FCFP4_1024b178numeric2 unique values
0 missing
FCFP4_1024b6numeric2 unique values
0 missing
FCFP4_1024b661numeric2 unique values
0 missing
FCFP4_1024b870numeric2 unique values
0 missing
FCFP4_1024b970numeric2 unique values
0 missing
FCFP4_1024b326numeric2 unique values
0 missing
FCFP4_1024b309numeric2 unique values
0 missing
FCFP4_1024b280numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing
FCFP4_1024b289numeric2 unique values
0 missing
FCFP4_1024b325numeric2 unique values
0 missing
FCFP4_1024b54numeric2 unique values
0 missing
FCFP4_1024b975numeric2 unique values
0 missing
FCFP4_1024b640numeric2 unique values
0 missing
FCFP4_1024b364numeric2 unique values
0 missing
FCFP4_1024b453numeric2 unique values
0 missing
FCFP4_1024b541numeric2 unique values
0 missing
FCFP4_1024b1numeric1 unique values
0 missing
FCFP4_1024b100numeric1 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing
FCFP4_1024b1001numeric1 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing
FCFP4_1024b1003numeric1 unique values
0 missing
FCFP4_1024b1004numeric2 unique values
0 missing
FCFP4_1024b1005numeric1 unique values
0 missing
FCFP4_1024b1006numeric2 unique values
0 missing
FCFP4_1024b1007numeric2 unique values
0 missing
FCFP4_1024b1008numeric1 unique values
0 missing
FCFP4_1024b1009numeric2 unique values
0 missing
FCFP4_1024b101numeric1 unique values
0 missing
FCFP4_1024b1011numeric1 unique values
0 missing
FCFP4_1024b1012numeric1 unique values
0 missing
FCFP4_1024b1013numeric2 unique values
0 missing
FCFP4_1024b1014numeric1 unique values
0 missing
FCFP4_1024b1015numeric1 unique values
0 missing
FCFP4_1024b1016numeric1 unique values
0 missing
FCFP4_1024b1017numeric1 unique values
0 missing

62 properties

218
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
1
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.48
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.16
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2.51
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
0.32
Mean standard deviation of attributes of the numeric type.
1.73
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
0.37
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-2.02
Minimum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
218
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.4
Third quartile of kurtosis among attributes of the numeric type.
4.63
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.29
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
-1.21
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.32
Third quartile of skewness among attributes of the numeric type.
14.76
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.18
First quartile of kurtosis among attributes of the numeric type.
0.45
Third quartile of standard deviation of attributes of the numeric type.
0.82
Maximum standard deviation of attributes of the numeric type.
Number of instances belonging to the least frequent class.
0.08
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.16
Mean kurtosis among attributes of the numeric type.
0.91
First quartile of skewness among attributes of the numeric type.
0.24
Mean of means among attributes of the numeric type.
0.26
First quartile of standard deviation of attributes of the numeric type.
0.53
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task