Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4054

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4054

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4054 (TID: 13076), and it has 103 rows and 58 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

60 features

pXC50 (target)numeric87 unique values
0 missing
molecule_id (row identifier)nominal103 unique values
0 missing
Eig02_EA.bo.numeric28 unique values
0 missing
SM12_AEA.ri.numeric28 unique values
0 missing
PW4numeric21 unique values
0 missing
Eig01_EA.bo.numeric30 unique values
0 missing
SM11_AEA.ri.numeric30 unique values
0 missing
SpMax_EA.bo.numeric30 unique values
0 missing
Eig03_AEA.ed.numeric18 unique values
0 missing
Eig03_EA.ed.numeric24 unique values
0 missing
PW3numeric26 unique values
0 missing
SM12_AEA.dm.numeric24 unique values
0 missing
SpDiam_AEA.ri.numeric62 unique values
0 missing
SpDiam_EA.ed.numeric26 unique values
0 missing
Eig01_AEA.bo.numeric31 unique values
0 missing
SM14_EA.bo.numeric39 unique values
0 missing
SM15_EA.bo.numeric39 unique values
0 missing
SpMax_AEA.bo.numeric31 unique values
0 missing
SpMax2_Bh.v.numeric32 unique values
0 missing
ZM2Kupnumeric85 unique values
0 missing
SM05_EA.bo.numeric35 unique values
0 missing
SM07_EA.bo.numeric37 unique values
0 missing
SM09_EA.bo.numeric39 unique values
0 missing
X3Anumeric17 unique values
0 missing
SM10_EA.bo.numeric41 unique values
0 missing
SM11_EA.bo.numeric39 unique values
0 missing
SM12_EA.bo.numeric40 unique values
0 missing
SM13_EA.bo.numeric38 unique values
0 missing
Eig01_AEA.ri.numeric55 unique values
0 missing
SpMax_AEA.ri.numeric55 unique values
0 missing
Eig01_EA.ri.numeric56 unique values
0 missing
SpDiam_EA.ri.numeric56 unique values
0 missing
SpMax_EA.ri.numeric56 unique values
0 missing
GGI10numeric24 unique values
0 missing
SpDiam_AEA.bo.numeric38 unique values
0 missing
Eig01_AEA.ed.numeric26 unique values
0 missing
Eig01_EAnumeric27 unique values
0 missing
Eig01_EA.ed.numeric27 unique values
0 missing
SM04_EA.ed.numeric37 unique values
0 missing
SM05_EA.ed.numeric28 unique values
0 missing
SM06_EA.ed.numeric33 unique values
0 missing
SM07_AEA.ed.numeric34 unique values
0 missing
SM07_EA.ed.numeric28 unique values
0 missing
SM08_AEA.ed.numeric33 unique values
0 missing
SM08_EAnumeric36 unique values
0 missing
SM08_EA.ed.numeric29 unique values
0 missing
SM09_AEA.bo.numeric27 unique values
0 missing
SM09_AEA.ed.numeric34 unique values
0 missing
SM09_EAnumeric28 unique values
0 missing
SM09_EA.ed.numeric28 unique values
0 missing
SM10_AEA.dm.numeric27 unique values
0 missing
SM10_AEA.ed.numeric34 unique values
0 missing
SM10_EAnumeric37 unique values
0 missing
SM10_EA.ed.numeric28 unique values
0 missing
SM11_AEA.ed.numeric31 unique values
0 missing
SM11_EAnumeric28 unique values
0 missing
SM11_EA.ed.numeric28 unique values
0 missing
SM12_AEA.ed.numeric30 unique values
0 missing
SM12_EAnumeric36 unique values
0 missing
SM12_EA.ed.numeric29 unique values
0 missing

62 properties

103
Number of instances (rows) of the dataset.
60
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
59
Number of numeric attributes.
1
Number of nominal attributes.
6.6
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
-2.9
Third quartile of skewness among attributes of the numeric type.
75.69
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
12.1
First quartile of kurtosis among attributes of the numeric type.
0.79
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
4.05
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
21.54
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.45
Mean of means among attributes of the numeric type.
-4.66
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.15
First quartile of standard deviation of attributes of the numeric type.
0.16
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
21.96
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.58
Number of attributes divided by the number of instances.
-3.54
Mean skewness among attributes of the numeric type.
10.31
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
1.8
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-3.78
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.71
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.51
Second quartile (Median) of standard deviation of attributes of the numeric type.
53.93
Maximum kurtosis among attributes of the numeric type.
0.16
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
353.84
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
30.91
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.33
Percentage of numeric attributes.
16.86
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-5.15
Minimum skewness among attributes of the numeric type.
1.67
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task