Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1908

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1908

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1908 (TID: 76), and it has 454 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric373 unique values
0 missing
molecule_id (row identifier)nominal454 unique values
0 missing
nImidazolesnumeric3 unique values
0 missing
C.042numeric3 unique values
0 missing
N.073numeric3 unique values
0 missing
D.Dtr05numeric194 unique values
0 missing
C.027numeric5 unique values
0 missing
nPyridinesnumeric3 unique values
0 missing
MATS1inumeric226 unique values
0 missing
P_VSA_LogP_6numeric33 unique values
0 missing
SRW05numeric6 unique values
0 missing
SaasNnumeric164 unique values
0 missing
C.006numeric5 unique values
0 missing
NaasNnumeric3 unique values
0 missing
H.048numeric4 unique values
0 missing
N.numeric81 unique values
0 missing
CATS2D_02_AAnumeric5 unique values
0 missing
C.033numeric4 unique values
0 missing
GATS1inumeric263 unique values
0 missing
nNnumeric6 unique values
0 missing
Chi1_EA.dm.numeric274 unique values
0 missing
nR05numeric4 unique values
0 missing
P_VSA_e_3numeric35 unique values
0 missing
Eta_betaS_Anumeric82 unique values
0 missing
CATS2D_04_LLnumeric35 unique values
0 missing
GATS4vnumeric264 unique values
0 missing
SpMin1_Bh.e.numeric179 unique values
0 missing
MATS1vnumeric123 unique values
0 missing
SpMin4_Bh.e.numeric261 unique values
0 missing
SRW07numeric17 unique values
0 missing
SRW09numeric33 unique values
0 missing
P_VSA_i_4numeric51 unique values
0 missing
SpMin4_Bh.i.numeric263 unique values
0 missing
GATS4pnumeric276 unique values
0 missing
CATS2D_03_LLnumeric35 unique values
0 missing
IC1numeric275 unique values
0 missing
SpMin1_Bh.i.numeric157 unique values
0 missing
SssCH2numeric336 unique values
0 missing
GATS3inumeric264 unique values
0 missing
GATS3vnumeric246 unique values
0 missing
SpMax2_Bh.e.numeric165 unique values
0 missing
MATS3inumeric243 unique values
0 missing
MATS4inumeric259 unique values
0 missing
CATS2D_01_LLnumeric25 unique values
0 missing
SpMin2_Bh.p.numeric180 unique values
0 missing
CATS2D_02_LLnumeric34 unique values
0 missing
CATS2D_04_ALnumeric16 unique values
0 missing
SpMin1_Bh.p.numeric151 unique values
0 missing
SpMax2_Bh.i.numeric162 unique values
0 missing
NssCH2numeric9 unique values
0 missing
MATS4pnumeric273 unique values
0 missing
NaaNHnumeric2 unique values
0 missing
SaaNHnumeric12 unique values
0 missing
SpMin1_Bh.m.numeric182 unique values
0 missing
MATS4vnumeric274 unique values
0 missing
SpMin4_Bh.p.numeric257 unique values
0 missing
SpDiam_EA.ri.numeric277 unique values
0 missing
SpMax2_Bh.m.numeric200 unique values
0 missing
GATS3mnumeric242 unique values
0 missing
MATS3vnumeric245 unique values
0 missing
CATS2D_04_AAnumeric5 unique values
0 missing
SM12_EA.ed.numeric264 unique values
0 missing
PW4numeric64 unique values
0 missing
SM10_EA.ed.numeric262 unique values
0 missing
SM11_EA.ed.numeric266 unique values
0 missing
GATS3pnumeric256 unique values
0 missing

62 properties

454
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
37.73
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.95
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
4.82
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.18
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.06
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.74
Third quartile of skewness among attributes of the numeric type.
34.15
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.3
First quartile of kurtosis among attributes of the numeric type.
1.51
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.48
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.46
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
5.07
Mean of means among attributes of the numeric type.
-0.12
First quartile of skewness among attributes of the numeric type.
0.23
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.11
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.15
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.26
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.51
Mean skewness among attributes of the numeric type.
1.51
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.28
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.38
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.84
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.51
Second quartile (Median) of standard deviation of attributes of the numeric type.
23.76
Maximum kurtosis among attributes of the numeric type.
-0.13
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task