Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1900

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1900

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1900 (TID: 242), and it has 671 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric351 unique values
0 missing
molecule_id (row identifier)nominal671 unique values
0 missing
C.043numeric3 unique values
0 missing
SaaNnumeric236 unique values
0 missing
nThiazolesnumeric2 unique values
0 missing
N.075numeric4 unique values
0 missing
NaaNnumeric4 unique values
0 missing
N.numeric83 unique values
0 missing
C.028numeric3 unique values
0 missing
SaaSnumeric141 unique values
0 missing
P_VSA_i_4numeric127 unique values
0 missing
NaaSnumeric2 unique values
0 missing
nNnumeric7 unique values
0 missing
P_VSA_m_4numeric33 unique values
0 missing
P_VSA_e_3numeric90 unique values
0 missing
SM02_EA.dm.numeric152 unique values
0 missing
IC2numeric362 unique values
0 missing
CATS2D_07_ANnumeric4 unique values
0 missing
SpDiam_EA.dm.numeric75 unique values
0 missing
Eig01_EA.dm.numeric58 unique values
0 missing
SpMax_EA.dm.numeric58 unique values
0 missing
SpAD_EA.dm.numeric177 unique values
0 missing
C.034numeric4 unique values
0 missing
IC1numeric364 unique values
0 missing
CATS2D_03_AAnumeric6 unique values
0 missing
nR09numeric4 unique values
0 missing
nSnumeric3 unique values
0 missing
SM12_EA.bo.numeric416 unique values
0 missing
SM10_EA.bo.numeric425 unique values
0 missing
SM11_EA.bo.numeric424 unique values
0 missing
SM13_EA.bo.numeric426 unique values
0 missing
D.Dtr05numeric251 unique values
0 missing
SM09_AEA.ed.numeric390 unique values
0 missing
SM09_EAnumeric380 unique values
0 missing
SM14_EA.bo.numeric425 unique values
0 missing
ZM1Kupnumeric491 unique values
0 missing
PDInumeric193 unique values
0 missing
S.107numeric3 unique values
0 missing
SM10_AEA.ed.numeric393 unique values
0 missing
MAXDNnumeric491 unique values
0 missing
P_VSA_s_3numeric424 unique values
0 missing
SM15_EA.bo.numeric423 unique values
0 missing
SIC1numeric217 unique values
0 missing
DBInumeric51 unique values
0 missing
CATS2D_07_AAnumeric8 unique values
0 missing
CATS2D_01_AAnumeric5 unique values
0 missing
CATS2D_08_AAnumeric7 unique values
0 missing
SpMax4_Bh.s.numeric293 unique values
0 missing
NaaaCnumeric4 unique values
0 missing
Eig10_EA.bo.numeric380 unique values
0 missing
SdsNnumeric141 unique values
0 missing
SpMax1_Bh.i.numeric214 unique values
0 missing
ATSC3snumeric640 unique values
0 missing
SsFnumeric197 unique values
0 missing
CATS2D_04_AAnumeric8 unique values
0 missing
CATS2D_03_ANnumeric2 unique values
0 missing
SpMaxA_AEA.dm.numeric170 unique values
0 missing
nHAccnumeric13 unique values
0 missing
ZM1Vnumeric200 unique values
0 missing
NdsNnumeric3 unique values
0 missing
ZM1MulPernumeric528 unique values
0 missing
GGI1numeric25 unique values
0 missing
CATS2D_06_ANnumeric3 unique values
0 missing
nHetnumeric14 unique values
0 missing
SIC2numeric194 unique values
0 missing
Eig02_AEA.dm.numeric297 unique values
0 missing
SpMax1_Bh.v.numeric233 unique values
0 missing
SpMax2_Bh.m.numeric366 unique values
0 missing
Vindexnumeric214 unique values
0 missing

62 properties

671
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.1
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.1
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.5
Mean skewness among attributes of the numeric type.
3.19
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
9.51
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.66
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.42
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.81
Second quartile (Median) of standard deviation of attributes of the numeric type.
44.67
Maximum kurtosis among attributes of the numeric type.
0.17
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
483.36
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.92
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
14.17
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.51
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.61
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.28
Third quartile of skewness among attributes of the numeric type.
145.91
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.13
First quartile of kurtosis among attributes of the numeric type.
1.58
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.54
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.88
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
28.18
Mean of means among attributes of the numeric type.
-0.55
First quartile of skewness among attributes of the numeric type.
-0.14
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.48
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task