Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1867

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1867

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1867 (TID: 52), and it has 877 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric573 unique values
0 missing
molecule_id (row identifier)nominal877 unique values
0 missing
FCFP4_1024b334numeric2 unique values
0 missing
FCFP4_1024b299numeric2 unique values
0 missing
FCFP4_1024b371numeric2 unique values
0 missing
FCFP4_1024b37numeric2 unique values
0 missing
FCFP4_1024b324numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b1020numeric2 unique values
0 missing
FCFP4_1024b644numeric2 unique values
0 missing
FCFP4_1024b181numeric2 unique values
0 missing
FCFP4_1024b187numeric2 unique values
0 missing
FCFP4_1024b1003numeric2 unique values
0 missing
FCFP4_1024b241numeric2 unique values
0 missing
FCFP4_1024b722numeric2 unique values
0 missing
FCFP4_1024b937numeric2 unique values
0 missing
FCFP4_1024b312numeric2 unique values
0 missing
FCFP4_1024b955numeric2 unique values
0 missing
FCFP4_1024b429numeric2 unique values
0 missing
FCFP4_1024b61numeric2 unique values
0 missing
FCFP4_1024b902numeric2 unique values
0 missing
FCFP4_1024b540numeric2 unique values
0 missing
FCFP4_1024b80numeric2 unique values
0 missing
FCFP4_1024b395numeric2 unique values
0 missing
FCFP4_1024b54numeric2 unique values
0 missing
FCFP4_1024b229numeric2 unique values
0 missing
FCFP4_1024b995numeric2 unique values
0 missing
FCFP4_1024b177numeric2 unique values
0 missing
FCFP4_1024b614numeric2 unique values
0 missing
FCFP4_1024b557numeric2 unique values
0 missing
FCFP4_1024b13numeric2 unique values
0 missing
FCFP4_1024b172numeric2 unique values
0 missing
FCFP4_1024b525numeric2 unique values
0 missing
FCFP4_1024b460numeric2 unique values
0 missing
FCFP4_1024b786numeric2 unique values
0 missing
FCFP4_1024b848numeric2 unique values
0 missing
FCFP4_1024b858numeric2 unique values
0 missing
FCFP4_1024b801numeric2 unique values
0 missing
FCFP4_1024b630numeric2 unique values
0 missing
FCFP4_1024b596numeric2 unique values
0 missing
FCFP4_1024b652numeric2 unique values
0 missing
FCFP4_1024b87numeric2 unique values
0 missing
FCFP4_1024b727numeric2 unique values
0 missing
FCFP4_1024b29numeric2 unique values
0 missing
FCFP4_1024b196numeric2 unique values
0 missing
FCFP4_1024b986numeric2 unique values
0 missing
FCFP4_1024b325numeric2 unique values
0 missing
FCFP4_1024b240numeric2 unique values
0 missing
FCFP4_1024b444numeric2 unique values
0 missing
FCFP4_1024b760numeric2 unique values
0 missing
FCFP4_1024b346numeric2 unique values
0 missing
FCFP4_1024b31numeric2 unique values
0 missing
FCFP4_1024b453numeric2 unique values
0 missing
FCFP4_1024b182numeric2 unique values
0 missing
FCFP4_1024b382numeric2 unique values
0 missing
FCFP4_1024b530numeric2 unique values
0 missing
FCFP4_1024b599numeric2 unique values
0 missing
FCFP4_1024b153numeric2 unique values
0 missing
FCFP4_1024b795numeric2 unique values
0 missing
FCFP4_1024b861numeric2 unique values
0 missing
FCFP4_1024b687numeric2 unique values
0 missing
FCFP4_1024b921numeric2 unique values
0 missing
FCFP4_1024b650numeric2 unique values
0 missing
FCFP4_1024b72numeric2 unique values
0 missing
FCFP4_1024b965numeric2 unique values
0 missing
FCFP4_1024b192numeric2 unique values
0 missing
FCFP4_1024b69numeric2 unique values
0 missing
FCFP4_1024b338numeric2 unique values
0 missing
FCFP4_1024b227numeric2 unique values
0 missing
FCFP4_1024b199numeric2 unique values
0 missing
FCFP4_1024b993numeric2 unique values
0 missing
FCFP4_1024b913numeric2 unique values
0 missing
FCFP4_1024b723numeric2 unique values
0 missing
FCFP4_1024b564numeric2 unique values
0 missing
FCFP4_1024b603numeric2 unique values
0 missing
FCFP4_1024b918numeric2 unique values
0 missing
FCFP4_1024b720numeric2 unique values
0 missing
FCFP4_1024b417numeric2 unique values
0 missing
FCFP4_1024b280numeric2 unique values
0 missing
FCFP4_1024b179numeric2 unique values
0 missing
FCFP4_1024b463numeric2 unique values
0 missing
FCFP4_1024b297numeric2 unique values
0 missing
FCFP4_1024b180numeric2 unique values
0 missing
FCFP4_1024b553numeric2 unique values
0 missing
FCFP4_1024b617numeric2 unique values
0 missing
FCFP4_1024b809numeric2 unique values
0 missing
FCFP4_1024b289numeric2 unique values
0 missing
FCFP4_1024b787numeric2 unique values
0 missing
FCFP4_1024b114numeric2 unique values
0 missing
FCFP4_1024b281numeric2 unique values
0 missing
FCFP4_1024b791numeric2 unique values
0 missing
FCFP4_1024b490numeric2 unique values
0 missing
FCFP4_1024b157numeric2 unique values
0 missing
FCFP4_1024b863numeric2 unique values
0 missing
FCFP4_1024b397numeric2 unique values
0 missing
FCFP4_1024b427numeric2 unique values
0 missing
FCFP4_1024b582numeric2 unique values
0 missing
FCFP4_1024b467numeric2 unique values
0 missing
FCFP4_1024b712numeric2 unique values
0 missing
FCFP4_1024b1numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing
FCFP4_1024b1001numeric2 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing

62 properties

877
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
29.61
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
6.08
Third quartile of skewness among attributes of the numeric type.
1.26
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
4.02
First quartile of kurtosis among attributes of the numeric type.
0.32
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.03
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
30.76
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.16
Mean of means among attributes of the numeric type.
2.36
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.16
First quartile of standard deviation of attributes of the numeric type.
-0.05
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
15.08
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.12
Number of attributes divided by the number of instances.
4.39
Mean skewness among attributes of the numeric type.
0.05
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.25
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
4.07
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.22
Second quartile (Median) of standard deviation of attributes of the numeric type.
877
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
6.63
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
35.1
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.12
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-10.34
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task